Insight into the activation of persulfate with ZrO2 modified S-doped g-C3N4 nanocomposite for degradation of tetracycline hydrochloride

被引:11
|
作者
Asiri, Abdullah M. [1 ,2 ]
Raza, Adil [3 ,4 ]
Shahzad, Muhammad Khuram [5 ]
Fadhali, Mohammed M. [6 ,7 ]
Khan, Sher Bahadar [2 ]
Alamry, Khalid Ahmad [2 ]
Alfifi, Soliman Y. [2 ]
Marwani, Hadi M. [2 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Chem Dept, POB 80203, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, Ctr Excellence Adv Mat Res, POB 80203, Jeddah 21589, Saudi Arabia
[3] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Jiangjun Rd Campus,29 Jiangjun Ave, Nanjing 210016, Peoples R China
[4] Univ Okara, Dept Phys, 2-KM Renala Khurd, Okara 56300, Pakistan
[5] Khawaja Fareed Univ Engn & Informat Technol, Inst Phys, Rahim Yar Khan 64200, Pakistan
[6] Jazan Univ, Fac Sci, Dept Phys, Jazan, Saudi Arabia
[7] Ibb Univ, Fac Sci, Dept Phys, Ibb, Yemen
关键词
ZrO2; Photo-catalytic degradation; Tetracycline hydrochloride; Active species; GRAPHITIC CARBON NITRIDE; PHOTOCATALYTIC DEGRADATION; FACILE FABRICATION; NANOPARTICLES; WATER; HETEROJUNCTION; PERFORMANCE; ADSORPTION; NANOSHEETS;
D O I
10.1016/j.jphotochem.2022.114486
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, ZrO2 modified S-doped g-C3N4 (ZSCN) is synthesized as an innovative and efficient solar light-driven heterojunction nanocomposite. A sulfate radical based advanced oxidation process (SRAOP) coupled with as-prepared nanocomposite for solar degradation of tetracycline hydrochloride (TCH) is employed in the presence of persulfate ions (PS). The TCH degradation efficiency of the operational parameters comprising the initial TCH amount, pH, and photo-catalyst dosage on the TCH degradation process are investigated. The presence of the PS ions as an electron acceptor significantly enhanced the degradation of TCH under solar light irradiation. Surprisingly, the ZSCN + PS system exhibited excellent degradation of 93.4 % for the initial concentration (40 mg/L) of TCH solution within 150 min. Compared to pure ZSCN, the enhanced degradation efficiency results from higher solar light absorption and a larger surface area. Also, the heterojunction formation at the ZrO2/S-g-C3N4 interface effectively improves the electron-hole separation efficiency. Radical scavenging test and electron spin response (EPS) studies were used to identify the reactive oxygen species (ROS) generated in ZSCN + PS process. O-1(2) was verified to be the major ROS responsible for TCH degradation. Scavenger tests and ESR analysis have shown that the center dot O-2(-) as major radical, along with center dot OH and center dot SO4-, were essential free radicals that played a key part in the TCH degrading pathway. The re-usability and stability of heterojunction nanocomposite are evaluated through recycling experiments. It is supposed that the current work can provide a positive direction for the design and fabrication of various photo-catalysts for the treatment of water pollution effectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Insight into impact of ZrO2 nanoparticles on photocatalytic degradation performance of g-C3N4 for tetracycline
    Jiang, Meng
    Xie, Jinqian
    Huang, Mingxiu
    Li, Zhanguo
    Yao, Yucen
    Sun, Wei
    Wang, Bei
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2024, 71 (04) : 358 - 367
  • [2] Degradation of tetracycline using persulfate activated by a honeycomb structured S-doped g-C3N4/biochar under visible light
    Xu, He
    Zhang, Tingting
    Wang, Dongfang
    Cai, Dongqing
    Chen, Shiyan
    Wang, Huaping
    Shu, Shihu
    Zhu, Yanping
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 300
  • [3] Ferrocene modified g-C3N4 as a heterogeneous catalyst for photo-assisted activation of persulfate for the degradation of tetracycline
    Wang, Zixuan
    Wang, Han
    Wang, Ziwei
    Huang, Danlian
    Qin, Hong
    He, Yangzhuo
    Chen, Ming
    Zeng, Guangming
    Xu, Piao
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 626
  • [4] Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3
    Ren F.
    Ouyang E.
    Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research, 2023, 37 (08): : 633 - 640
  • [5] Preparation of phosphorus-doped mesoporous g-C3N4 and its photocatalytic degradation of tetracycline hydrochloride
    Zhang, Hongshen
    Hu, Xiaojun
    Tang, Yihong
    Zhang, Hongbo
    Li, Kan
    MICROPOROUS AND MESOPOROUS MATERIALS, 2023, 360
  • [6] Zinc Chloride-Doped g-C3N4 Microtubes for Enhanced Photocatalytic Degradation of Tetracycline Hydrochloride
    Ye, Xiao-Yu
    Qi, Yu-Ling
    Cheng, Ying
    Wang, Qiang
    Han, Guo-Zhi
    LANGMUIR, 2025, 41 (03) : 1684 - 1693
  • [7] Au/Pd/g-C3N4 nanocomposites for photocatalytic degradation of tetracycline hydrochloride
    Zhao, Ruiyang
    Sun, Xiaoxia
    Jin, Yanrou
    Han, Jishu
    Wang, Lei
    Liu, Fusheng
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (07) : 5445 - 5456
  • [8] Synthesis and application of Ag3PO4 photocatalyst modified by g-C3N4 for tetracycline hydrochloride degradation
    Yang, Jing
    Yang, Haixin
    Li, Meng
    Zhang, Hongxi
    Wei, Liang
    Yang, Xiande
    SOLID STATE SCIENCES, 2024, 155
  • [9] Au/Pd/g-C3N4 nanocomposites for photocatalytic degradation of tetracycline hydrochloride
    Ruiyang Zhao
    Xiaoxia Sun
    Yanrou Jin
    Jishu Han
    Lei Wang
    Fusheng Liu
    Journal of Materials Science, 2019, 54 : 5445 - 5456
  • [10] Photocatalytic degradation of tetracycline hydrochloride with g-C3N4/Ag/AgBr composites
    Song, Jiahe
    Zhao, Kun
    Yin, Xiangbin
    Liu, Ying
    Khan, Iltaf
    Liu, Shu-Yuan
    FRONTIERS IN CHEMISTRY, 2022, 10