Synthesis and Catalytic Activity for 2, 3, and 4-Nitrophenol Reduction of Green Catalysts Based on Cu, Ag and Au Nanoparticles Deposited on Polydopamine-Magnetite Porous Supports

被引:3
|
作者
Brown, Helen K. [1 ]
El Haskouri, Jamal [1 ]
Marcos, Maria D. [2 ]
Ros-Lis, Jose Vicente [3 ]
Amoros, Pedro [1 ]
Picot, M. Angeles Ubeda [4 ]
Perez-Pla, Francisco [1 ]
机构
[1] Inst Ciencia dels Mat ICMUV, c-Catedrat Jose Beltran 2, Paterna 46980, Valencia, Spain
[2] Univ Politecn Valencia, Univ Valencia, Unidad Mixta Univ Politecn Valencia, Ctr Reconocimiento Mol & Desarrollo Tecnol IDM,Dep, Camino Vera s-n, Valencia 46022, Spain
[3] Univ Valencia, Unidad Mixta Univ Politecn Valencia, Ctr Reconocimiento Mol & Desarrollo Tecnol IDM, Dr Moliner 50, Burjassot 46100, Spain
[4] Univ Valencia, Dept Quim Inorgan, Dr Moliner 50, Burjassot 46100, Valencia, Spain
关键词
Cu; Ag; Au nanoparticles; polydopamine; magnetite; nitrophenol reduction; CORE-SHELL NANOPARTICLES; GOLD NANOPARTICLES; SURFACE-CHEMISTRY; HIGHLY EFFICIENT; FACILE SYNTHESIS; HYDROGENATION; NANOCATALYST; SILICA;
D O I
10.3390/nano13152162
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work reports on the synthesis of nine materials containing Cu, Ag, Au, and Ag/Cu nanoparticles (NPs) deposited on magnetite particles coated with polydopamine (PDA). Ag NPs were deposited on two PDA@Fe3O4 supports differing in the thickness of the PDA film. The film thickness was adjusted to impart a textural porosity to the material. During synthesis, Ag(I) was reduced with ascorbic acid (HA), photochemically, or with NaBH4, whereas Au(III), with HA, with the PDA cathecol groups, or NaBH4. For the material characterization, TGA, XRD, SEM, EDX, TEM, STEM-HAADF, and DLS were used. The catalytic activity towards reduction of 4-, 3- and 2-nitrophenol was tested and correlated with the synthesis method, film thickness, metal particle size and NO2 group position. An evaluation of the recyclability of the materials was carried out. In general, the catalysts prepared by using soft reducing agents and/or thin PDA films were the most active, while the materials reduced with NaBH4 remained unchanged longer in the reactor. The activity varied in the direction Au > Ag > Cu. However, the Ag-based materials showed a higher recyclability than those based on gold. It is worth noting that the Cu-containing catalyst, the most environmentally friendly, was as active as the best Ag-based catalyst.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Synthesis of Au, Ag, and Au-Ag Bimetallic Nanoparticles UsingPulicaria undulataExtract and Their Catalytic Activity for the Reduction of 4-Nitrophenol
    Khan, Merajuddin
    Al-hamoud, Khaleel
    Liaqat, Zainab
    Shaik, Mohammed Rafi
    Adil, Syed Farooq
    Kuniyil, Mufsir
    Alkhathlan, Hamad Z.
    Al-Warthan, Abdulrahman
    Siddiqui, Mohammed Rafiq H.
    Mondeshki, Mihail
    Tremel, Wolfgang
    Khan, Mujeeb
    Tahir, Muhammad Nawaz
    NANOMATERIALS, 2020, 10 (09) : 1 - 14
  • [2] Green synthesis of polymer stabilized polyhedral Au, Au–Ag and Au–Cu nanoparticles and their catalytic activity for the reduction of 2-nitrophenol
    J. García-Serrano
    C. B. Rodríguez-Cisneros
    Y. M. Hernández-Rodríguez
    Chemical Papers, 2023, 77 : 5079 - 5090
  • [3] Evaluation of catalytic activity of Ag and Au dendrimer-encapsulated nanoparticles in the reduction of 4-nitrophenol
    Bingwa, Ndzondelelo
    Meijboom, Reinout
    Journal of Molecular Catalysis A: Chemical, 2015, 396 : 1 - 7
  • [4] Evaluation of catalytic activity of Ag and Au dendrimer-encapsulated nanoparticles in the reduction of 4-nitrophenol
    Bingwa, Ndzondelelo
    Meijboom, Reinout
    Journal of Molecular Catalysis A: Chemical, 2015, 396 : 1 - 7
  • [5] Evaluation of catalytic activity of Ag and Au dendrimer-encapsulated nanoparticles in the reduction of 4-nitrophenol
    Bingwa, Ndzondelelo
    Meijboom, Reinout
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2015, 396 : 1 - 7
  • [6] Photochemical Green Synthesis of Calcium-Alginate-Stabilized Ag and Au Nanoparticles and Their Catalytic Application to 4-Nitrophenol Reduction
    Saha, Sandip
    Pal, Anjali
    Kundu, Subrata
    Basu, Soumen
    Pal, Tarasankar
    LANGMUIR, 2010, 26 (04) : 2885 - 2893
  • [7] Hollow porous Cu-Au particles with high catalytic activity for the reduction of 4-nitrophenol
    Jiang, Jianwei
    Yoon, Sungho
    Piao, Longhai
    CRYSTENGCOMM, 2020, 22 (26): : 4386 - 4392
  • [8] Green synthesis of polymer stabilized polyhedral Au, Au-Ag and Au-Cu nanoparticles and their catalytic activity for the reduction of 2-nitrophenol
    Garcia-Serrano, J.
    Rodriguez-Cisneros, C. B.
    Hernandez-Rodriguez, Y. M.
    CHEMICAL PAPERS, 2023, 77 (09) : 5079 - 5090
  • [9] Biosynthesis of Au and Ag-Au bimetallic nanoparticles by pedicellamide for catalytic reduction of 4-nitrophenol
    Tamuly, Chandan
    Hazarika, Moushumi
    Bordoloi, Manobjyoti
    Journal of Bionanoscience, 2015, 9 (06): : 460 - 464
  • [10] In situ green synthesis of Ag nanoparticles on tea polyphenols-modified graphene and their catalytic reduction activity of 4-nitrophenol
    Wang, Zhimin
    Xu, Cuilian
    Li, Xin
    Liu, Zhaohui
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2015, 485 : 102 - 110