Low temperature electrical transport in microwave plasma fabricated free-standing graphene and N-graphene sheets

被引:1
|
作者
Valcheva, E. [1 ]
Kirilov, K. [1 ]
Bundaleska, N. [2 ]
Dias, A. [2 ]
Felizardo, E. [2 ]
Abrashev, M. [1 ]
Bundaleski, N. [3 ]
Teodoro, O. M. N. D. [3 ]
Strunskus, Th [4 ]
Kiss'ovski, Zh [1 ]
Alves, L. L. [2 ]
Tatarova, E. [2 ]
机构
[1] Sofia Univ, Fac Phys, 5 J Bourchier Blvd, Sofia 1164, Bulgaria
[2] Univ Lisbon, Inst Plasmas & Fusao Nucl, Inst Super Tecn, P-1049 Lisbon, Portugal
[3] Univ Nova Lisboa, CEFITEC, Dept Fis, Fac Ciencias & Tecnol, P-2829516 Lisbon, Portugal
[4] Christian Albrechts Univ Kiel, Inst Mat Sci, Kiel, Germany
关键词
free-standing graphene sheets; microwave plasma-based synthesis; N-doping; low temperature conduction mechanism; variable range hopping; NITROGEN-DOPED GRAPHENE; LARGE-SCALE; CARBON; OXIDE;
D O I
10.1088/2053-1591/acb7ca
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the electrical transport in free-standing graphene and N-graphene sheets fabricated by a microwave plasma-based method is addressed. Temperature-dependent resistivity/conductivity measurements are performed on the graphene/N-graphene sheets compressed in pellets. Different measurement configurations reveal directional dependence of current flow-the room-temperature conductivity longitudinal to the pellet's plane is an order of magnitude higher than the transversal one, due to the preferential orientation of graphene sheets in the pellets. SEM imaging confirms that the graphene sheets are mostly oriented parallel to the pellet's plane and stacked in agglomerates. The high longitudinal electrical conductivity with values on the order of 10(3) S/m should be noted. Further, the current flow mechanism revealed from resistivity-temperature dependences from 300K down to 10K shows non-metallic behavior manifested with an increasing resistivity with decreasing the temperature dp/dT < 0) usually observed for insulating or localized systems. The observed charge transport shows variable range hopping at lower temperatures and thermally activated behaviour at higher temperatures. This allows us to attribute the charge transport mechanism to a partially disordered system in which single graphene sheets are placed predominantly parallel to each other and stacked together.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Electrical Conductivity of Free-standing N-graphene Sheets
    Valcheva, E.
    Kirilov, K.
    Arnaudov, B.
    Bundaleska, N.
    Henriques, J.
    Russev, S.
    Tatarova, E.
    [J]. 10TH JUBILEE CONFERENCE OF THE BALKAN PHYSICAL UNION, 2019, 2075
  • [2] Towards large-scale in free-standing graphene and N-graphene sheets
    E. Tatarova
    A. Dias
    J. Henriques
    M. Abrashev
    N. Bundaleska
    E. Kovacevic
    N. Bundaleski
    U. Cvelbar
    E. Valcheva
    B. Arnaudov
    A. M. Botelho do Rego
    A. M. Ferraria
    J. Berndt
    E. Felizardo
    O. M. N. D. Teodoro
    Th. Strunskus
    L. L. Alves
    B. Gonçalves
    [J]. Scientific Reports, 7
  • [3] Towards large-scale in free-standing graphene and N-graphene sheets
    Tatarova, E.
    Dias, A.
    Henriques, J.
    Abrashev, M.
    Bundaleska, N.
    Kovacevic, E.
    Bundaleski, N.
    Cvelbar, U.
    Valcheva, E.
    Arnaudov, B.
    Botelho do Rego, A. M.
    Ferraria, A. M.
    Berndt, J.
    Felizardo, E.
    Teodoro, O. M. N. D.
    Strunskus, Th.
    Alves, L. L.
    Goncalves, B.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [4] Microwave plasma-based direct synthesis of free-standing N-graphene
    Tsyganov, D.
    Bundaleska, N.
    Dias, A.
    Henriques, J.
    Felizardo, E.
    Abrashev, M.
    Kissovski, J.
    do Rego, A. M. Botelho
    Ferraria, A. M.
    Tatarova, E.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (08) : 4772 - 4787
  • [5] Free-standing N-Graphene as conductive matrix for Ni(OH)2 based supercapacitive electrodes
    Upadhyay, Kush K.
    Bundaleska, N.
    Abrashev, M.
    Bundaleski, N.
    Teodoro, O. M. N. D.
    Fonseca, I.
    de Ferro, Andre Mao
    Silva, Rui Pedro
    Tatarova, E.
    Montemor, M. F.
    [J]. ELECTROCHIMICA ACTA, 2020, 334
  • [6] Simultaneous Synthesis and Nitrogen Doping of Free-Standing Graphene Applying Microwave Plasma
    Tsyganov, D.
    Bundaleska, N.
    Henriques, J.
    Felizardo, E.
    Dias, A.
    Abrashev, M.
    Kissovski, J.
    do Rego, A. M. Botelho
    Ferraria, A. M.
    Tatarova, E.
    [J]. MATERIALS, 2020, 13 (18)
  • [7] Large-scale synthesis of free-standing N-doped graphene using microwave plasma
    Bundaleska, N.
    Henriques, J.
    Abrashev, M.
    Botelho do Rego, A. M.
    Ferraria, A. M.
    Almeida, A.
    Dias, F. M.
    Valcheva, E.
    Arnaudov, B.
    Upadhyay, K. K.
    Montemor, M. F.
    Tatarova, E.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [8] Large-scale synthesis of free-standing N-doped graphene using microwave plasma
    N. Bundaleska
    J. Henriques
    M. Abrashev
    A. M. Botelho do Rego
    A. M. Ferraria
    A. Almeida
    F. M. Dias
    E. Valcheva
    B. Arnaudov
    K. K. Upadhyay
    M. F. Montemor
    E. Tatarova
    [J]. Scientific Reports, 8
  • [9] Production of N-graphene by microwave N2-Ar plasma
    Dias, A.
    Bundaleski, N.
    Tatarova, E.
    Dias, F. M.
    Abrashev, M.
    Cvelbar, U.
    Teodoro, O. M. N. D.
    Henriques, J.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (05)
  • [10] Microwave plasmas applied for the synthesis of free standing graphene sheets
    Tatarova, E.
    Dias, A.
    Henriques, J.
    Botelho do Rego, A. M.
    Ferraria, A. M.
    Abrashev, M. V.
    Luhrs, C. C.
    Phillips, J.
    Dias, F. M.
    Ferreira, C. M.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (38)