Blood oxygenation-level dependent cerebrovascular reactivity imaging as strategy to monitor CSF-hemoglobin toxicity

被引:2
|
作者
Thomson, Bart R. [1 ,2 ,3 ]
Richter, Henning [4 ,5 ]
Akeret, Kevin [1 ,2 ]
Buzzi, Raphael M. [3 ]
Anagnostakou, Vania [6 ,7 ,8 ]
van Niftrik, Christiaan H. B. [1 ,2 ]
Schwendinger, Nina [1 ,2 ]
Kulcsar, Zsolt [5 ,6 ,7 ]
Kronen, Peter W. [5 ,9 ]
Regli, Luca [1 ,2 ]
Fierstra, Jorn [1 ,2 ]
Schaer, Dominik J. [3 ]
Hugelshofer, Michael [1 ,2 ,5 ]
机构
[1] Univ Hosp, Clin Neurosci Ctr, Dept Neurosurg, Zurich, Switzerland
[2] Univ Zurich, Zurich, Switzerland
[3] Univ Hosp Zurich, Div Internal Med, Zurich, Switzerland
[4] Univ Zurich, Vetsuisse Fac, Dept Clin Diagnost & Serv, Clin Diagnost Imaging, Zurich, Switzerland
[5] Univ Zurich, Ctr Appl Biotechnol & Mol Med CABMM, Zurich, Switzerland
[6] Univ Hosp, Clin Neurosci Ctr, Dept Neuroradiol, Zurich, Switzerland
[7] Univ Zurich, Zurich, Switzerland
[8] Univ Massachusetts, Dept Radiol, Med Sch, Worcester, MA USA
[9] Vet Anaesthesia Serv Int, Winterthur, Switzerland
来源
基金
瑞士国家科学基金会;
关键词
BOLD-CVR; Imaging; CSF-Hb; Early detection; SUBARACHNOID HEMORRHAGE; HAPTOGLOBIN; VASOSPASM; ISCHEMIA; STROKE; RISK; CO2;
D O I
10.1016/j.jstrokecerebrovasdis.2023.106985
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Objectives: Cell-free hemoglobin in the cerebrospinal fluid (CSF-Hb) maybe one of the main drivers of secondary brain injury after aneurysmal subarachnoid hemor-rhage (aSAH). Haptoglobin scavenging of CSF-Hb has been shown to mitigate cere-brovascular disruption. Using digital subtraction angiography (DSA) and blood oxygenation-level dependent cerebrovascular reactivity imaging (BOLD-CVR) the aim was to assess the acute toxic effect of CSF-Hb on cerebral blood flow and autor-egulation, as well as to test the protective effects of haptoglobin. Methods: DSA imaging was performed in eight anesthetized and ventilated sheep (mean weight: 80.4 kg) at baseline, 15, 30, 45 and 60 minutes after infusion of hemoglobin (Hb) or co-infusion with haptoglobin (Hb:Haptoglobin) into the left lateral ventricle. Addi-tionally, 10 ventilated sheep (mean weight: 79.8 kg) underwent BOLD-CVR imag-ing to assess the cerebrovascular reserve capacity. Results: DSA imaging did not show a difference in mean transit time or cerebral blood flow. Whole-brain BOLD-CVR compared to baseline decreased more in the Hb group after 15 minutes (Hb vs Hb:Haptoglobin:-0.03 +/- 0.01 vs-0.01 +/- 0.02) and remained diminished compared to Hb:Haptoglobin group after 30 minutes (Hb vs Hb:Haptoglobin:-0.03 +/- 0.01 vs 0.0 +/- 0.01), 45 minutes (Hb vs Hb:Haptoglobin:-0.03 +/- 0.01 vs 0.01 +/- 0.02) and 60 minutes (Hb vs Hb:Haptoglobin:-0.03 +/- 0.02 vs 0.01 +/- 0.01). Conclusion: It is dem-onstrated that CSF-Hb toxicity leads to rapid cerebrovascular reactivity impairment, which is blunted by haptoglobin co-infusion. BOLD-CVR may there-fore be further evaluated as a monitoring strategy for CSF-Hb toxicity after aSAH.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Crossed cerebellar diaschisis - diagnostic and prognostic value of Blood Oxygenation-Level Dependent cerebrovascular reactivity
    Sebok, M.
    van Niftrik, C. H. B.
    Piccirelli, M.
    Bozinov, O.
    Wegner, S.
    Esposito, G.
    Pangalu, A.
    Valvanis, A.
    Buck, A.
    Luft, A.
    Regli, L.
    Fierstra, J.
    CEREBROVASCULAR DISEASES, 2018, 45 : 305 - 306
  • [2] Hemodynamic investigation of peritumoral impaired blood oxygenation-level dependent cerebrovascular reactivity in patients with diffuse glioma
    Muscas, Giovanni
    van Niftrik, Christiaan Hendrik Bas
    Sebok, Martina
    Seystahl, Katharina
    Piccirelli, Marco
    Stippich, Christoph
    Weller, Michael
    Regli, Luca
    Fierstra, Jorn
    MAGNETIC RESONANCE IMAGING, 2020, 70 : 50 - 56
  • [3] Computed diffusion contribution in the complex blood oxygenation-level dependent fMRI signal
    Chen, Zikuan
    Calhoun, Vince D.
    CONCEPTS IN MAGNETIC RESONANCE PART A, 2012, 40A (03) : 128 - 145
  • [4] Blood oxygenation level dependent MRI: A novel perfusion imaging strategy for the ischaemic limb
    Bajwa, A.
    Wesolowski, R.
    Patel, A.
    Saha, P.
    Lyons, O.
    Smith, A.
    Nagel, E.
    Modarai, B.
    BRITISH JOURNAL OF SURGERY, 2014, 101 : 2 - 2
  • [5] Imaging Cerebrovascular Reserve using Blood Flow and Oxygenation Level Dependent: A Study using Acetazolamide Challenge
    Qiu, Deqiang
    Nahab, Fadi
    Dehkharghani, Seena
    STROKE, 2015, 46
  • [6] GLIOBLASTOMA TISSUE INVASION MAPPING WITH NOVEL HYPOXIA-TARGETED BLOOD OXYGENATION-LEVEL DEPENDENT MRI
    Stumpo, Vittorio
    Bellomo, Jacopo
    van Niftrik, Christiaan Hendrick Bas
    Sebok, Martina
    Kulcsar, Zsolt
    Weller, Michael
    Bink, Andrea
    Regli, Luca
    Fierstra, Jorn
    NEURO-ONCOLOGY, 2024, 26
  • [7] Feasibility of blood oxygenation level-dependent MR imaging to monitor hepatic transcatheter arterial embolization in rabbits
    Rhee, TK
    Larson, AC
    Prasad, PV
    Santos, E
    Sato, KT
    Salem, R
    Deng, J
    Paunesku, T
    Woloschak, GE
    Mulcahy, MF
    Li, DB
    Omary, RA
    JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2005, 16 (11) : 1523 - 1528
  • [8] Temporally shifted hemodynamic response model helps to extract acupuncture-induced functional magnetic resonance imaging blood oxygenation-level dependent activities
    Ho, Tsung-Jung
    Duann, Jeng-Ren
    Chen, Chun-Ming
    Chen, Jeon-Hor
    Shen, Wu-Chung
    Lu, Tung-Wu
    Liao, Jan-Ray
    Lin, Zen-Pin
    Shaw, Kuo-Ning
    Lin, Jaung-Geng
    CHINESE MEDICAL JOURNAL, 2009, 122 (07) : 823 - 829
  • [9] Temporally shifted hemodynamic response model helps to extract acupuncture-induced functional magnetic resonance imaging blood oxygenation-level dependent activities
    Tsung-Jung Ho
    Jeng-Ren Duann
    Jeon-Hor Chen
    Wu-Chung Shen
    Tung-Wu Lu
    Jan-Ray Liao
    Kuo-Ning Shaw
    Jaung-Geng Lin
    中华医学杂志(英文版), 2009, (07) : 823 - 829
  • [10] Blood oxygenation level dependent functional magnetic resonance imaging
    McIntyre, M
    Richter, W
    Morden, D
    Wennerberg, A
    Frankenstein, U
    CONCEPTS IN MAGNETIC RESONANCE PART A, 2003, 16A (01) : 5 - 15