Generalized domination of ergodic elements in ordered Banach algebras

被引:0
|
作者
Mouton, S. [1 ]
Rabearivony, A. D. [1 ]
机构
[1] Stellenbosch Univ, Dept Math Sci, Private Bag X1, ZA-7602 Matieland, South Africa
基金
新加坡国家研究基金会;
关键词
Ordered Banach algebra; ergodic element; spectrum; regular operator; SPECTRAL THEORY; OPERATORS;
D O I
10.2989/16073606.2023.2287851
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an ordered Banach algebra and a, b is an element of A such that 0 <= a <= b. The domination problem involves finding natural conditions under which properties of b will be inherited by a. In [12] this problem was investigated for ergodic elements, where a is an element of A is ergodic if the sequence converges in A. In this paper we consider the more general problem where the assumption 0 <= a <= b is replaced by the weaker condition +/- a <= b.
引用
收藏
页码:305 / 317
页数:13
相关论文
共 50 条
  • [1] Domination by ergodic elements in ordered Banach algebras
    S. Mouton
    K. Muzundu
    Positivity, 2014, 18 : 119 - 130
  • [2] Domination by ergodic elements in ordered Banach algebras
    Mouton, S.
    Muzundu, K.
    POSITIVITY, 2014, 18 (01) : 119 - 130
  • [3] On domination of inessential elements in ordered Banach algebras
    Behrendt, D.
    Raubenheimer, H.
    ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (03) : 927 - 936
  • [4] Domination properties in ordered Banach algebras
    Mouton, HD
    Mouton, S
    STUDIA MATHEMATICA, 2002, 149 (01) : 63 - 73
  • [5] On quasipositive elements in ordered Banach algebras
    Herzog, G
    Lemmert, R
    STUDIA MATHEMATICA, 1998, 129 (01) : 59 - 65
  • [6] Eventually positive elements in ordered Banach algebras
    Herzog, Gerd
    Kunstmann, Peer C.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2023, 64 (03): : 321 - 330
  • [7] Generalized M-matrices and ordered Banach algebras
    Herzog, G
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 363 : 125 - 131
  • [8] On Poles of the Resolvents of Dominated Elements in Ordered Banach Algebras
    Muzundu, Kelvin
    ORDERED STRUCTURES AND APPLICATIONS, 2016, : 329 - 337
  • [9] Generalized derivations preserving quasinilpotent elements in Banach algebras
    Liu, Cheng-Kai
    Liau, Pao-Kuei
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (09): : 1888 - 1908
  • [10] Generalized Drazin invertibility of the product of elements in Banach algebras
    Honglin Z.
    Yuedi Z.
    Jianlong C.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2023, 53 (01): : 182 - 186