Compressive sensing-based correlation plenoptic imaging

被引:2
|
作者
Petrelli, Isabella [1 ]
Santoro, Francesca [1 ]
Massaro, Gianlorenzo [2 ,3 ]
Scattarella, Francesco [2 ,3 ]
Pepe, Francesco V. [2 ,3 ]
Mazzia, Francesca [4 ]
Ieronymaki, Maria [5 ]
Filios, George [5 ]
Mylonas, Dimitris [5 ]
Pappas, Nikos [5 ]
Abbattista, Cristoforo [1 ]
D'Angelo, Milena [2 ,3 ]
机构
[1] Planetek Italia srl, Bari, Italy
[2] Univ Bari, Dipartimento Interuniv Fis, I-70126 Bari, Italy
[3] Ist Nazl Fis Nucleare Sez Bari, Bari, Italy
[4] Univ Bari, Dipartimento Informat, Bari, Italy
[5] Planetek Hellas EPE, Athens 15125, Greece
基金
欧盟地平线“2020”; 瑞士国家科学基金会;
关键词
light-field imaging; Plenoptic Imaging; 3D imaging; correlation imaging; compressive sensing; RECONSTRUCTION;
D O I
10.3389/fphy.2023.1287740
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Correlation Plenoptic Imaging (CPI) is an innovative approach to plenoptic imaging that tackles the inherent trade-off between image resolution and depth of field. By exploiting the intensity correlations that characterize specific states of light, it extracts information of the captured light direction, enabling the reconstruction of images with increased depth of field while preserving resolution. We describe a novel reconstruction algorithm, relying on compressive sensing (CS) techniques based on the discrete cosine transform and on gradients, used in order to reconstruct CPI images with a reduced number of frames. We validate the algorithm using simulated data and demonstrate that CS-based reconstruction techniques can achieve high-quality images with smaller acquisition times, thus facilitating the practical application of CPI.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Compressive sensing-based SAR imaging for undersampled echo
    Chen, Weizhi
    Cheng, Ziyue
    Zhang, Yueyuan
    Chen, Jiaqi
    Zhan, Huopan
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2022, 64 (03) : 476 - 481
  • [2] On exploiting interbeat correlation in compressive sensing-based ECG compression
    Polania, Luisa F.
    Carrillo, Rafael E.
    Blanco-Velasco, Manuel
    Barner, Kenneth E.
    [J]. COMPRESSIVE SENSING, 2012, 8365
  • [3] Compressive Sensing-Based Born Iterative Method for Tomographic Imaging
    Oliveri, Giacomo
    Poli, Lorenzo
    Anselmi, Nicola
    Salucci, Marco
    Massa, Andrea
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2019, 67 (05) : 1753 - 1765
  • [4] Multidimensional dictionary learning algorithm for compressive sensing-based hyperspectral imaging
    Zhao, Rongqiang
    Wang, Qiang
    Shen, Yi
    Li, Jia
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2016, 25 (06)
  • [5] Evaluation on Compressive Sensing-based Image Reconstruction Method for Microwave Imaging
    Basari
    Ramdani, Syahrul
    [J]. 2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 3348 - 3352
  • [6] COMPRESSIVE SENSING-BASED IMAGE HASHING
    Kang, Li-Wei
    Lu, Chun-Shien
    Hsu, Chao-Yung
    [J]. 2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 1285 - 1288
  • [7] Fast Compressive Sensing-Based SAR Imaging Integrated With Motion Compensation
    Pu, Wei
    Huang, Yulin
    Wu, Junjie
    Yang, Haiguang
    Yang, Jianyu
    [J]. IEEE ACCESS, 2019, 7 : 53284 - 53295
  • [8] Compressive Sensing-Based Speech Enhancement
    Wang, Jia-Ching
    Lee, Yuan-Shan
    Lin, Chang-Hong
    Wang, Shu-Fan
    Shih, Chih-Hao
    Wu, Chung-Hsien
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2016, 24 (11) : 2122 - 2131
  • [9] Compressive Sensing-Based SAR Tomography
    Khomchuk, Peter
    Bilik, Igal
    Kasilingam, Dayalan P.
    [J]. 2010 IEEE RADAR CONFERENCE, 2010, : 354 - 358
  • [10] Compressive sensing-based inverse synthetic radar imaging imaging from incomplete data
    Tomei, Sonia
    Bacci, Alessio
    Giusti, Elisa
    Martorella, Marco
    Berizzi, Fabrizio
    [J]. IET RADAR SONAR AND NAVIGATION, 2016, 10 (02): : 386 - 397