Improving air quality assessment using physics-inspired deep graph learning

被引:3
|
作者
Li, Lianfa [1 ,2 ]
Wang, Jinfeng [1 ]
Franklin, Meredith [2 ,3 ]
Yin, Qian [1 ]
Wu, Jiajie [1 ]
Camps-Valls, Gustau [4 ]
Zhu, Zhiping [1 ]
Wang, Chengyi [5 ]
Ge, Yong [1 ]
Reichstein, Markus [6 ]
机构
[1] Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China
[2] Univ Southern Calif, Dept Prevent Med, Los Angeles, CA 90007 USA
[3] Univ Toronto, Dept Stat Sci, Toronto, ON, Canada
[4] Univ Valencia, Image Proc Lab IPL, Valencia, Spain
[5] Chinese Acad Sci, Aerosp Informat Res Inst, Natl Engn Res Ctr Geomat, Beijing, Peoples R China
[6] Max Planck Inst Biogeochem, Jena, Germany
基金
中国国家自然科学基金;
关键词
OZONE POLLUTION; CHINA; REGRESSION; CHEMISTRY; NETWORKS; FRAMEWORK; PM2.5;
D O I
10.1038/s41612-023-00475-3
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Existing methods for fine-scale air quality assessment have significant gaps in their reliability. Purely data-driven methods lack any physically-based mechanisms to simulate the interactive process of air pollution, potentially leading to physically inconsistent or implausible results. Here, we report a hybrid multilevel graph neural network that encodes fluid physics to capture spatial and temporal dynamic characteristics of air pollutants. On a multi-air pollutant test in China, our method consistently improved extrapolation accuracy by an average of 11-22% compared to several baseline machine learning methods, and generated physically consistent spatiotemporal trends of air pollutants at fine spatial and temporal scales.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Improving air quality assessment using physics-inspired deep graph learning
    Lianfa Li
    Jinfeng Wang
    Meredith Franklin
    Qian Yin
    Jiajie Wu
    Gustau Camps-Valls
    Zhiping Zhu
    Chengyi Wang
    Yong Ge
    Markus Reichstein
    npj Climate and Atmospheric Science, 6
  • [2] Physics-Inspired Graph Neural Networks
    Bronstein, Michael
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VII, 2023, 14175
  • [3] Graph coloring with physics-inspired graph neural networks
    Schuetz, Martin J. A.
    Brubaker, J. Kyle
    Zhu, Zhihuai
    Katzgraber, Helmut G.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [4] Predicting binding motifs of complex adsorbates using machine learning with a physics-inspired graph representation
    Wenbin Xu
    Karsten Reuter
    Mie Andersen
    Nature Computational Science, 2022, 2 : 443 - 450
  • [5] Predicting binding motifs of complex adsorbates using machine learning with a physics-inspired graph representation
    Xu, Wenbin
    Reuter, Karsten
    Andersen, Mie
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (07): : 443 - 450
  • [6] Extrapolation of Physics-Inspired Deep Networks in Learning Robot Inverse Dynamics
    Li, Zhiming
    Wu, Shuangshuang
    Chen, Wenbai
    Sun, Fuchun
    MATHEMATICS, 2024, 12 (16)
  • [7] Combinatorial optimization with physics-inspired graph neural networks
    Martin J. A. Schuetz
    J. Kyle Brubaker
    Helmut G. Katzgraber
    Nature Machine Intelligence, 2022, 4 : 367 - 377
  • [8] Combinatorial optimization with physics-inspired graph neural networks
    Schuetz, Martin J. A.
    Brubaker, J. Kyle
    Katzgraber, Helmut G.
    NATURE MACHINE INTELLIGENCE, 2022, 4 (04) : 367 - 377
  • [9] Scatter Correction in X-Ray CT by Physics-Inspired Deep Learning
    Iskender, Berk
    Bresler, Yoram
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2022, 8 : 1074 - 1088
  • [10] Physics-inspired machine learning of localized intensive properties
    Chen, Ke
    Kunkel, Christian
    Cheng, Bingqing
    Reuter, Karsten
    Margraf, Johannes T.
    CHEMICAL SCIENCE, 2023, 14 (18) : 4913 - 4922