In the present paper, the author adopts a pretentious approach and recovers an estimate obtained by Linnik for the sums of the von Mangoldt function ? on arithmetic progressions. It is the analogue of an estimate that Linnik established in his attempt to prove his celebrated theorem concerning the size of the smallest prime number of an arithmetic progression. Our work builds on ideas coming from the pretentious large sieve of Granville, Harper, and Soundararajan and it also borrows insights from the treatment of Koukoulopoulos on multiplicative functions with small averages.
机构:
Aix Marseille Univ, CNRS, Inst Math Marseille, Site Sud,UMR 7373, Campus Luminy,Case 907, Marseille 13288 9, FranceAix Marseille Univ, CNRS, Inst Math Marseille, Site Sud,UMR 7373, Campus Luminy,Case 907, Marseille 13288 9, France
Ramare, Olivier
Srivastav, Priyamvad
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math Sci, Chennai 600113, Tamil Nadu, India
Homi Bhabha Natl Inst, Training Sch Complex, Mumbai 400094, Maharashtra, IndiaAix Marseille Univ, CNRS, Inst Math Marseille, Site Sud,UMR 7373, Campus Luminy,Case 907, Marseille 13288 9, France
Srivastav, Priyamvad
Serra, Oriol
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Cataluna, C Pau Gargallo 14, Barcelona 08028, SpainAix Marseille Univ, CNRS, Inst Math Marseille, Site Sud,UMR 7373, Campus Luminy,Case 907, Marseille 13288 9, France