On bivariate Kantorovich exponential sampling series

被引:0
|
作者
Kumar, Prashant [1 ]
Sathish Kumar, A. [2 ]
Bajpeyi, Shivam [3 ]
机构
[1] Visvesvaraya Natl Inst Technol, Dept Math, Nagpur, India
[2] Indian Inst Technol Madras, Dept Math, Chennai, India
[3] Indian Inst Technol Delhi, Dept Math, New Delhi, India
关键词
GBS operators; Kantorovich type exponential sampling series; Mellin B-continuous; Mellin transform; mixed modulus of smoothness??????; APPROXIMATION; OPERATORS;
D O I
10.1002/mma.9202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and analyze the approximation properties of bivariate generalization for the family of Kantorovich type exponential sampling series. We derive the basic convergence result and Voronovskaya type theorem for the proposed sampling series. Using logarithmic modulus of smoothness, we establish the quantitative estimate of order of convergence for the Kantorovich type exponential sampling series. Furthermore, we study the convergence results for the generalized Boolean sum (GBS) operator associated with bivariate Kantorovich exponential sampling series. At the end, we provide a few examples of kernels to which the presented theory can be applied along with the graphical representation and error estimates.
引用
收藏
页码:12645 / 12659
页数:15
相关论文
共 50 条
  • [1] Bivariate generalized Kantorovich-type exponential sampling series
    Acar, Tuncer
    Eke, Abdulkadir
    Kursun, Sadettin
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (01)
  • [2] Bivariate generalized Kantorovich-type exponential sampling series
    Tuncer Acar
    Abdulkadir Eke
    Sadettin Kursun
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2024, 118
  • [3] Generalized Kantorovich forms of exponential sampling series
    Aral, Ali
    Acar, Tuncer
    Kursun, Sadettin
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (02)
  • [4] Approximation by generalized bivariate Kantorovich sampling type series
    Angamuthu, Sathish Kumar
    Ponnaian, Devaraj
    JOURNAL OF ANALYSIS, 2019, 27 (02): : 429 - 449
  • [5] Approximation by generalized bivariate Kantorovich sampling type series
    Sathish Kumar Angamuthu
    Devaraj Ponnaian
    The Journal of Analysis, 2019, 27 : 429 - 449
  • [6] Multidimensional Kantorovich modifications of exponential sampling series
    Acar, Tuncer
    Kursun, Sadettin
    Turgay, Metin
    QUAESTIONES MATHEMATICAE, 2023, 46 (01) : 57 - 72
  • [7] Generalized Kantorovich forms of exponential sampling series
    Ali Aral
    Tuncer Acar
    Sadettin Kursun
    Analysis and Mathematical Physics, 2022, 12
  • [8] Approximation of discontinuous functions by Kantorovich exponential sampling series
    Kumar, A. Sathish
    Kumar, Prashant
    Devaraj, P.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (03)
  • [9] Pointwise convergence of generalized Kantorovich exponential sampling series
    Acar, Tuncer
    Kursun, Sadettin
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2023, 16 : 1 - 10
  • [10] Inverse approximation and GBS of bivariate Kantorovich type sampling series
    A. Sathish Kumar
    Bajpeyi Shivam
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114