HOKEM: HUMAN AND OBJECT KEYPOINT-BASED EXTENSION MODULE FOR HUMAN-OBJECT INTERACTION DETECTION

被引:0
|
作者
Ito, Yoshiki [1 ]
机构
[1] Hitachi Ltd, R&D Grp, Tokyo, Japan
关键词
Human-object interaction detection; graph convolutional network; object keypoint extraction;
D O I
10.1109/ICIP49359.2023.10222203
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human-object interaction (HOI) detection for capturing relationships between humans and objects is an important task in the semantic understanding of images. When processing human and object keypoints extracted from an image using a graph convolutional network (GCN) to detect HOI, it is crucial to extract appropriate object keypoints regardless of the object type and to design a GCN that accurately captures the spatial relationships between keypoints. This paper presents the human and object keypoint-based extension module (HOKEM) as an easy-to-use extension module to improve the accuracy of the conventional detection models. The proposed object keypoint extraction method is simple yet accurately represents the shapes of various objects. Moreover, the proposed human-object adaptive GCN (HO-AGCN), which introduces adaptive graph optimization and attention mechanism, accurately captures the spatial relationships between keypoints. Experiments using the HOI dataset, V-COCO, showed that HOKEM boosted the accuracy of an appearance-based model by a large margin.
引用
收藏
页码:271 / 275
页数:5
相关论文
共 50 条
  • [1] A Survey of Human-Object Interaction Detection
    Gong, Xun
    Zhang, Zhiying
    Liu, Lu
    Ma, Bing
    Wu, Kunlun
    [J]. Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2022, 57 (04): : 693 - 704
  • [2] Human object interaction detection based on feature optimization and key human-object enhancement
    Ye, Qing
    Wang, Xikun
    Li, Rui
    Zhang, Yongmei
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 93
  • [3] Human-Object Interaction Detection Based on Star Graph
    Cai, Shuang
    Ma, Shiwei
    Gu, Dongzhou
    Wang, Chang
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (09)
  • [4] An Improved Human-Object Interaction Detection Network
    Gao, Song
    Wang, Hongyu
    Song, Jilai
    Xu, Fang
    Zou, Fengshan
    [J]. PROCEEDINGS OF 2019 IEEE 13TH INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (IEEE-ASID'2019), 2019, : 192 - 196
  • [5] Distance Matters in Human-Object Interaction Detection
    Wang, Guangzhi
    Guo, Yangyang
    Wong, Yongkang
    Kankanhalli, Mohan
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 4546 - 4554
  • [6] Human-object interaction detection with missing objects
    Kogashi, Kaen
    Wu, Yang
    Nobuhara, Shohei
    Nishino, Ko
    [J]. IMAGE AND VISION COMPUTING, 2021, 113
  • [7] Agglomerative Transformer for Human-Object Interaction Detection
    Tu, Danyang
    Sun, Wei
    Zhai, Guangtao
    Shen, Wei
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21557 - 21567
  • [8] Local Keypoint-Based Image Detector with Object Detection
    Grycuk, Rafal
    Scherer, Magdalena
    Voloshynovskiy, Sviatoslav
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2017, PT I, 2017, 10245 : 507 - 517
  • [9] Diagnosing Rarity in Human-object Interaction Detection
    Kilickaya, Mert
    Smeulders, Arnold
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 3956 - 3960
  • [10] Lifelong Learning for Human-Object Interaction Detection
    Sun, Bo
    Lu, Sixu
    He, Jun
    Yu, Lejun
    [J]. 2022 IEEE 10TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND NETWORKS (ICICN 2022), 2022, : 582 - 587