A Note on Δ-Critical Graphs

被引:0
|
作者
Haxell, Penny [1 ]
Naserasr, Reza [2 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Univ Paris Cite, IRIF, CNRS, F-75013 Paris, France
基金
加拿大自然科学与工程研究理事会;
关键词
Vertex colouring; k-critical; Borodin-Kostochka conjecture; NUMBER;
D O I
10.1007/s00373-023-02696-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A k-critical graph is a k-chromatic graph whose proper subgraphs are all (k - 1)-colourable. An old open problem due to Borodin and Kostochka asserts that for k >= 9, no k-critical graph G with k = Delta(G) exists, where Delta(G) denotes the maximum degree of G. We show that if a certain special list-colouring property holds for every 8-critical graph with Delta = 8 (which is true for the apparently only known example), then the Borodin-Kostochka Conjecture holds. We also briefly survey constructions of Delta-critical graphs with Delta <= 8, highlighting the apparent scarcity of such graphs once Delta exceeds 6.
引用
收藏
页数:9
相关论文
共 50 条