Systematic Development of a Multi-Objective Design Optimization Process Based on a Surrogate-Assisted Evolutionary Algorithm for Electric Machine Applications

被引:2
|
作者
Choi, Mingyu [1 ]
Choi, Gilsu [1 ]
Bramerdorfer, Gerd [2 ]
Marth, Edmund [2 ]
机构
[1] Inha Univ, Dept Elect Engn, Incheon 22212, South Korea
[2] Johannes Kepler Univ Linz, Inst Elect Drives & Power Elect, A-4040 Linz, Austria
基金
新加坡国家研究基金会;
关键词
electric machine design; multi-objective design optimization; interior permanent magnet synchronous machine (IPMSM); surrogate model (SM); metaheuristic optimization algorithm; GENETIC ALGORITHM;
D O I
10.3390/en16010392
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Surrogate model (SM)-based optimization approaches have gained significant attention in recent years due to their ability to find optimal solutions faster than finite element (FE)-based methods. However, there is limited previous literature available on the detailed process of constructing SM-based approaches for multi-parameter, multi-objective design optimization of electric machines. This paper aims to present a systematic design optimization process for an interior permanent magnet synchronous machine (IPMSM), including a thorough examination of the construction of the SM and the adjustment of its parameters, which are crucial for reducing computation time. The performances of SM candidates such as Kriging, artificial neural networks (ANNs), and support vector regression (SVR) are analyzed, and it is found that Kriging exhibits relatively better performance. The hyperparameters of each SM are fine-tuned using Bayesian optimization to avoid manual and empirical tuning. In addition, the convergence criteria for determining the number of FE computations needed to construct an SM are discussed in detail. Finally, the validity of the proposed design process is verified by comparing the Pareto fronts obtained from the SM-based and conventional FE-based methods. The results show that the proposed procedure can significantly reduce the total computation time by approximately 93% without sacrificing accuracy compared to the conventional FE-based method.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A Novel Surrogate-Assisted Multi-Objective Optimization Algorithm for an Electromagnetic Machine Design
    Lim, Dong-Kuk
    Woo, Dong-Kyun
    Yeo, Han-Kyeol
    Jung, Sang-Yong
    Ro, Jong-Suk
    Jung, Hyun-Kyo
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (03)
  • [2] A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization
    Li, Jinglu
    Wang, Peng
    Dong, Huachao
    Shen, Jiangtao
    Chen, Caihua
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [3] A New Surrogate-assisted Robust Multi-objective Optimization Algorithm for an Electrical Machine Design
    Dong-Kuk Lim
    Dong-Kyun Woo
    [J]. Journal of Electrical Engineering & Technology, 2019, 14 : 1247 - 1254
  • [4] A New Surrogate-assisted Robust Multi-objective Optimization Algorithm for an Electrical Machine Design
    Lim, Dong-Kuk
    Woo, Dong-Kyun
    [J]. JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2019, 14 (03) : 1247 - 1254
  • [5] A bagging-based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization
    Yuanchao Liu
    Jianchang Liu
    Shubin Tan
    Yongkuan Yang
    Fei Li
    [J]. Neural Computing and Applications, 2022, 34 : 12097 - 12118
  • [6] A bagging-based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization
    Liu, Yuanchao
    Liu, Jianchang
    Tan, Shubin
    Yang, Yongkuan
    Li, Fei
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (14): : 12097 - 12118
  • [7] A pairwise comparison based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization
    Tian, Ye
    Hu, Jiaxing
    He, Cheng
    Ma, Haiping
    Zhang, Limiao
    Zhang, Xingyi
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2023, 80
  • [8] Diversity Based Surrogate-assisted Evolutionary Algorithm for Expensive Multi-objective Optimization Problem
    Sun Z.-R.
    Huang Y.-H.
    Chen Z.-Y.
    [J]. Ruan Jian Xue Bao/Journal of Software, 2021, 32 (12): : 3814 - 3828
  • [9] A clustering-based surrogate-assisted evolutionary algorithm (CSMOEA) for expensive multi-objective optimization
    Wenxin Wang
    Huachao Dong
    Peng Wang
    Xinjing Wang
    Jiangtao Shen
    [J]. Soft Computing, 2023, 27 : 10665 - 10686
  • [10] A clustering-based surrogate-assisted evolutionary algorithm (CSMOEA) for expensive multi-objective optimization
    Wang, Wenxin
    Dong, Huachao
    Wang, Peng
    Wang, Xinjing
    Shen, Jiangtao
    [J]. SOFT COMPUTING, 2023, 27 (15) : 10665 - 10686