Taking cues from machine learning, compartmental and time series models for SARS-CoV-2 omicron infection in Indian provinces

被引:0
|
作者
Yadav, Subhash Kumar [1 ]
Khan, Saif Ali [1 ]
Tiwari, Mayank [1 ]
Kumar, Arun [1 ]
Kumar, Vinit [2 ]
Akhter, Yusuf [3 ]
机构
[1] Babasaheb Bhimrao Ambedkar Univ, Sch Phys & Decis Sci, Dept Stat, Lucknow 226025, India
[2] Babasaheb Bhimrao Ambedkar Univ, Sch Informat Sci & Technol, Dept Lib & Informat Sci, Lucknow 226025, India
[3] Babasaheb Bhimrao Ambedkar Univ, Sch Life Sci, Dept Biotechnol, Lucknow 226025, India
关键词
Infectious disease; Disease modeling; Basic reproduction number; Infection rate; Recovery rate; Arima; Random forest; Distribution fitting; SIR EPIDEMIC MODEL; COVID-19; ARIMA; IMMUNITY;
D O I
10.1016/j.sste.2024.100634
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
SARS-CoV-2, the virus responsible for COVID-19, posed a significant threat to the world. We analyzed COVID-19 dissemination data in the top ten Indian provinces by infection incidences using the Susceptible-InfectiousRemoved (SIR) model, an Autoregressive Integrated Moving Average (ARIMA) time series model, a machine learning model based on the Random Forest, and distribution fitting. Outbreaks are expected to continue if the Basic Reproduction Number (R-0 ) > 1, and infection waves are anticipated to end if the R-0 < 1, as determined by the SIR model. Different parametric probability distributions are also fitted. Data collected from December 12, 2021, to March 31, 2022, encompassing data from both before and during the implementation of strict control measures. Based on the estimates of the model parameters, health agencies and government policymakers can develop strategies to combat the spread of the disease in the future, and the most effective technique can be recommended for real-world application for other outbreaks of COVID-19. The best method out of these could be also implemented further on the epidemiological data of other similar infectious agents.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Vaccination compartmental epidemiological models for the delta and omicron SARS-CoV-2 variants
    Cuevas-Maraver, J.
    Kevrekidis, P. G.
    Chen, Q. Y.
    Kevrekidis, G. A.
    Drossinos, Y.
    MATHEMATICAL BIOSCIENCES, 2024, 367
  • [2] Predicting clinical outcomes of SARS-CoV-2 infection during the Omicron wave using machine learning
    Cogill, Steven
    Nallamshetty, Shriram
    Fullenkamp, Natalie
    Heberer, Kent
    Lynch, Julie
    Lee, Kyung Min
    Aslan, Mihaela
    Shih, Mei-Chiung
    Lee, Jennifer S.
    PLOS ONE, 2024, 19 (04):
  • [3] Machine Learning Models Identify Inhibitors of SARS-CoV-2
    Gawriljuk, Victor O.
    Zin, Phyo Phyo Kyaw
    Puhl, Ana C.
    Zorn, Kimberley M.
    Foil, Daniel H.
    Lane, Thomas R.
    Hurst, Brett
    Tavella, Tatyana Almeida
    Maranhao Costa, Fabio Trindade
    Lakshmanane, Premkumar
    Bernatchez, Jean
    Godoy, Andre S.
    Oliva, Glaucius
    Siqueira-Neto, Jair L.
    Madrid, Peter B.
    Ekins, Sean
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (09) : 4224 - 4235
  • [4] Neutralization against Omicron SARS-CoV-2 from previous non-Omicron infection
    Zou, Jing
    Xia, Hongjie
    Xie, Xuping
    Kurhade, Chaitanya
    Machado, Rafael R. G.
    Weaver, Scott C.
    Ren, Ping
    Shi, Pei-Yong
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [5] Neutralization against Omicron SARS-CoV-2 from previous non-Omicron infection
    Jing Zou
    Hongjie Xia
    Xuping Xie
    Chaitanya Kurhade
    Rafael R. G. Machado
    Scott C. Weaver
    Ping Ren
    Pei-Yong Shi
    Nature Communications, 13
  • [6] Effect of Neurological Manifestations on SARS-CoV-2 Infection Prognosis using Machine Learning Models
    Thepmankorn, Parisorn
    Heshmati, Keyvan
    Souayah, Sami
    Shafiq, Basit
    Adam, Tarek
    Adam, Nabil
    Souayah, Nizar
    NEUROLOGY, 2021, 96 (15)
  • [7] Protection against the Omicron Variant from Previous SARS-CoV-2 Infection
    Altarawneh, Heba N.
    Chemaitelly, Hiam
    Hasan, Mohammad R.
    Ayoub, Houssein H.
    Qassim, Suelen
    AlMukdad, Sawsan
    Coyle, Peter
    Yassine, Hadi M.
    Al-Khatib, Hebah A.
    Benslimane, Fatiha M.
    Al-Kanaani, Zaina
    Al-Kuwari, Einas
    Jeremijenko, Andrew
    Kaleeckal, Anvar H.
    Latif, Ali N.
    Shaik, Riyazuddin M.
    Abdul-Rahim, Hanan F.
    Nasrallah, Gheyath K.
    Al-Kuwari, Mohamed G.
    Butt, Adeel A.
    Al-Romaihi, Hamad E.
    Al-Thani, Mohamed H.
    Al-Khal, Abdullatif
    Bertollini, Roberto
    Tang, Patrick
    Abu-Raddad, Laith J.
    NEW ENGLAND JOURNAL OF MEDICINE, 2022, 386 (13): : 1288 - 1290
  • [8] Seizure classifications in pediatric SARS-CoV-2 Omicron infection
    Tang, C-M
    Kuo, C-Y
    Yen, C-W
    Lin, J-J
    Hsieh, Y-C
    Hsia, S-H
    Chan, O-W
    Lee, E-P
    Hung, P-C
    Chiu, C-H
    Wang, H-S
    Lin, K-L
    EPILEPSIA, 2023, 64 : 161 - 161
  • [9] Neutralization Profile after Recovery from SARS-CoV-2 Omicron Infection
    Roessler, Annika
    Knabl, Ludwig
    von Laer, Dorothee
    Kimpel, Janine
    NEW ENGLAND JOURNAL OF MEDICINE, 2022, 386 (18): : 1764 - 1766
  • [10] SARS-CoV-2 dual infection with Delta and Omicron variants in an
    Abroi, Aare
    Talas, Ulvi Gerst
    Pauskar, Merit
    Shablinskaja, Arina
    Reisberg, Tuuli
    Niglas, Heiki
    Pall, Taavi
    Nelis, Mari
    Tagen, Ingrid
    Soodla, Pilleriin
    Lutsar, Irja
    Huik, Kristi
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2022, 124 : 41 - 44