Angle ranks of abelian varieties

被引:1
|
作者
Dupuy, Taylor [2 ]
Kedlaya, Kiran S. [1 ]
Zureick-Brown, David [3 ]
机构
[1] Univ Calif San Diego, Dept Math, 9500 Gilman Dr,0112, La Jolla, CA 92093 USA
[2] Univ Vermont, Burlington, VT USA
[3] Amherst Coll, Amherst, MA USA
基金
美国国家科学基金会;
关键词
REPRESENTATIONS; CONJECTURE; FINITE; CYCLES;
D O I
10.1007/s00208-023-02633-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the formalism of Newton hyperplane arrangements, we resolve the open questions regarding angle rank left over from work of the first two authors with Roe and Vincent. As a consequence we end up generalizing theorems of Lenstra-Zarhin and Tankeev proving several new cases of the Tate conjecture for abelian varieties over finite fields. We also obtain an effective version of a recent theorem of Zarhin bounding the heights of coefficients in multiplicative relations among Frobenius eigenvalues.
引用
收藏
页码:169 / 185
页数:17
相关论文
共 50 条