On the boundedness of a family of oscillatory singular integrals

被引:0
|
作者
Al-Qassem, Hussain [1 ]
Cheng, Leslie [2 ]
Pan, Yibiao [3 ]
机构
[1] Qatar Univ, Coll Arts & Sci, Dept Math Stat & Phys, Math Program, Doha 2713, Qatar
[2] Bryn Mawr Coll, Dept Math, Bryn Mawr, PA 19010 USA
[3] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
oscillatory integrals; singular integrals; Calderon-Zygmund kernels; Hardy spaces; HARMONIC-ANALYSIS;
D O I
10.5802/crmath.523
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega is an element of H-1(Sn-1) with mean value zero, P and Q be polynomials in n variables with real coefficients and Q(0) = 0. We prove that vertical bar p.v. integral(Rn) e(i(P(x)+1/Q(x))) Omega(x/vertical bar x vertical bar)/vertical bar x vertical bar(n) dx <= A parallel to Omega parallel to(H1(Sn-1)) where A may depend on n, deg(P) and deg(Q), but not otherwise on the coefficients of P and Q. The above result answers an open question posed in [13]. Additional boundedness results of similar nature are also obtained.
引用
收藏
页码:1673 / 1681
页数:9
相关论文
共 50 条