An experiment on an automated literature survey of data-driven speech enhancement methods

被引:0
|
作者
dos Santos, Arthur [1 ]
Pereira, Jayr [2 ]
Nogueira, Rodrigo [2 ]
Masiero, Bruno [1 ]
Tavallaey, Shiva Sander [3 ,4 ]
Zea, Elias [4 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, Commun Acoust Lab, BR-13083970 Campinas, SP, Brazil
[2] NeuralMind, BR-13083898 Campinas, SP, Brazil
[3] ABB Corp Res, SE-72226 Vasteras, Sweden
[4] KTH Royal Inst Technol, Dept Engn Mech, Marcus Wallenberg Lab Sound & Vibrat Res, SE-10044 Stockholm, Sweden
来源
ACTA ACUSTICA | 2024年 / 8卷
基金
巴西圣保罗研究基金会;
关键词
Speech enhancement methods; Data-driven acoustics; Literature survey; Natural language processing; Large language models; INDUCED HEARING-LOSS; SOURCE LOCALIZATION; ART;
D O I
10.1051/aacus/2023067
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The increasing number of scientific publications in acoustics, in general, presents difficulties in conducting traditional literature surveys. This work explores the use of a generative pre-trained transformer (GPT) model to automate a literature survey of 117 articles on data-driven speech enhancement methods. The main objective is to evaluate the capabilities and limitations of the model in providing accurate responses to specific queries about the papers selected from a reference human-based survey. While we see great potential to automate literature surveys in acoustics, improvements are needed to address technical questions more clearly and accurately.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] An experiment on an automated literature survey of data-driven speech enhancement methods
    Dos Santos, Arthur
    Pereira, Jayr
    Nogueira, Rodrigo
    Masiero, Bruno
    Tavallaey, Shiva Sander
    Zea, Elias
    [J]. Acta Acustica, 2024, 8
  • [2] A data-driven approach to optimizing spectral speech enhancement methods for various error criteria
    Erkelens, Jan
    Jensen, Jesper
    Heusdens, Richard
    [J]. SPEECH COMMUNICATION, 2007, 49 (7-8) : 530 - 541
  • [3] Speech Enhancement Based on Data-Driven Residual Gain Estimation
    Jin, Yu Gwang
    Kim, Nam Soo
    Chang, Joon-Hyuk
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2011, E94D (12): : 2537 - 2540
  • [4] A Survey on Data-Driven Scenario Generation for Automated Vehicle Testing
    Cai, Jinkang
    Deng, Weiwen
    Guang, Haoran
    Wang, Ying
    Li, Jiangkun
    Ding, Juan
    [J]. MACHINES, 2022, 10 (11)
  • [5] Data-driven Methods for Travel Time Estimation: A Survey
    Zheng, Zhipeng
    Ye, Yongchao
    Zhu, Yuanshao
    Zhang, Shiyao
    Yu, James J. Q.
    [J]. 2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 1292 - 1299
  • [6] A GENERALIZED DATA-DRIVEN SPEECH ENHANCEMENT FRAMEWORK FOR BILATERAL COCHLEAR IMPLANTS
    Mirzahasanloo, Taher S.
    Kehtarnavaz, Nasser
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 7269 - 7273
  • [7] ADVERSARIAL TRAINING FOR DATA-DRIVEN SPEECH ENHANCEMENT WITHOUT PARALLEL CORPUS
    Higuchi, Takuya
    Kinoshita, Keisuke
    Delcroix, Marc
    Nakatani, Tomohiro
    [J]. 2017 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU), 2017, : 40 - 47
  • [8] Data-driven analysis of speech
    Hermansky, H
    [J]. TEXT, SPEECH AND DIALOGUE, 1999, 1692 : 10 - 18
  • [9] Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey
    Zhang, Weiting
    Yang, Dong
    Wang, Hongchao
    [J]. IEEE SYSTEMS JOURNAL, 2019, 13 (03): : 2213 - 2227
  • [10] Generating Phrasal and Sentential Paraphrases: A Survey of Data-Driven Methods
    Madnani, Nitin
    Dorr, Bonnie J.
    [J]. COMPUTATIONAL LINGUISTICS, 2010, 36 (03) : 341 - 387