Preparation of MgCo2O4@NiCo2S4 core-shell nanocomposites for high-performance asymmetric supercapacitors

被引:7
|
作者
Yu, Yue [1 ,2 ]
Liu, Jianbo [1 ,2 ]
Wang, Lizhong [1 ,2 ]
Hou, Lujin [1 ,3 ]
机构
[1] Jilin Normal Univ, Key Lab Funct Mat Phys & Chem, Minist Educ, Siping 136000, Peoples R China
[2] Jilin Normal Univ, Coll Informat Technol, Siping 136000, Peoples R China
[3] Jilin Normal Univ, Coll Phys, Siping 136000, Peoples R China
关键词
Supercapacitors; Core -shell nanocomposite structures; Specific capacitance; Energy density; ELECTRODE MATERIAL; NANOTUBE ARRAYS; ENERGY-STORAGE; CARBON CLOTH; NICKEL FOAM;
D O I
10.1016/j.electacta.2022.141664
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The MgCo2O4@NiCo2S4 core-shell structure was prepared using hydrothermal and annealing methods. The synergy between MgCo2O4 nanoneedles and NiCo2S4 nanosheets is beneficial to improved electronic trans-mission capability. In this experiment, the specific capacity of MgCo2O4@NiCo2S4 can reach 1255.1 C g(-1) at 1 A g(-1) . supercapacitor (ASC) was designed using MgCo2O4@NiCo2S4 and activated carbon (AC) as electrode materials. It has an excellent cycle stability of 83.2% after 5000 cycles. Meanwhile, the ASC shows a remarkable energy density of 111.26 Wh kg(-1) at 800.4 W kg (-1.) In conclusion, MgCo2O4@NiCo2S4 is very promising as an energy storage material. And it shows good capacity performance and cycling stability (78.07% after 2000 cycles). An asymmetric
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Facile construction of a MgCo2O4@NiMoO4/NF core-shell nanocomposite for high-performance asymmetric supercapacitors
    Gao, Haiwen
    Wang, Xiaohong
    Wang, Ganghu
    Hao, Chen
    Huang, Chengxiang
    Jiang, Chenglong
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (42) : 13267 - 13278
  • [2] Three-Dimensional NiCo2O4@MnMoO4 Core-Shell Nanoarrays for High-Performance Asymmetric Supercapacitors
    Yuan, Yuliang
    Wang, Weicheng
    Yang, Jie
    Tang, Haichao
    Ye, Zhizhen
    Zeng, Yujia
    Lu, Jianguo
    [J]. LANGMUIR, 2017, 33 (40) : 10446 - 10454
  • [3] Three-dimensional NiCo2O4@NiCo2O4 core-shell nanocones arrays for high-performance supercapacitors
    Wang, Xiuhua
    Fang, Yao
    Shi, Bo
    Huang, Feifei
    Rong, Fang
    Que, Ronghui
    [J]. CHEMICAL ENGINEERING JOURNAL, 2018, 344 : 311 - 319
  • [4] Core-shell structured MgCo2O4@Ni(OH)2 nanorods as electrode materials for high-performance asymmetric supercapacitors
    Liu, Yawen
    Tian, Miao
    Wang, Zixuan
    Wang, Chunxiao
    Cui, Liang
    Xu, Jiangtao
    Liu, Jingquan
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 678 : 130 - 140
  • [5] Facile construction of MgCo2O4@CoFe layered double hydroxide core-shell nanocomposites on nickel foam for high-performance asymmetric supercapacitors
    Liu, Zhiqiang
    Liu, Ying
    Zhong, Yuxue
    Cui, Liang
    Yang, Wenrong
    Razal, Joselito M.
    Barrow, Colin J.
    Liu, Jingquan
    [J]. JOURNAL OF POWER SOURCES, 2021, 484
  • [6] NiCo2O4@MnMoO4 core-shell flowers for high performance supercapacitors
    Gu, Zhengxiang
    Zhang, Xiaojun
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (21) : 8249 - 8254
  • [7] NiCo2O4 nanosheet supported hierarchical core-shell arrays for high-performance supercapacitors
    Zhou, Weiwei
    Kong, Dezhi
    Jia, Xingtao
    Ding, Chunyan
    Cheng, Chuanwei
    Wen, Guangwu
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (18) : 6310 - 6315
  • [8] Hierarchical CNT@NiCo2O4 core-shell hybrid nanostructure for high-performance supercapacitors
    Cai, Feng
    Kang, Yiran
    Chen, Hongyuan
    Chen, Minghai
    Li, Qingwen
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (29) : 11509 - 11515
  • [9] Preparation of ZnCo2O4@PANI core/shell nanobelts for high-performance asymmetric supercapacitors
    Chen, Xiaobo
    Cai, Jianghao
    [J]. DALTON TRANSACTIONS, 2022, 51 (43) : 16587 - 16595
  • [10] NiCo2S4@PPy core-shell nanotube arrays on Ni foam for high-performance supercapacitors
    Meng, F. Y.
    Yuan, Y. F.
    Guo, S. Y.
    Xu, Y. X.
    [J]. MATERIALS TECHNOLOGY, 2017, 32 (13) : 815 - 822