Counterexample classification

被引:0
|
作者
Vick, Cole [1 ]
Kang, Eunsuk [2 ]
Tripakis, Stavros [3 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA USA
[3] Northeastern Univ, Boston, MA USA
来源
SOFTWARE AND SYSTEMS MODELING | 2024年 / 23卷 / 02期
基金
美国国家科学基金会;
关键词
Model checking; Formal modelling; debugging; AUTHENTICATION;
D O I
10.1007/s10270-023-01118-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In model checking, when a model fails to satisfy the desired specification, a typical model checker provides a counterexample that illustrates how the violation occurs. In general, there exist many diverse counterexamples that exhibit distinct violating behaviors, which the user may wish to examine before deciding how to repair the model. Unfortunately, (1) the number of counterexamples may be too large to enumerate one by one, and (2) many of these counterexamples are redundant, in that they describe the same type of violating behavior. In this paper, we propose a technique called counterexample classification. The goal of classification is to cover the space of all counterexamples into a finite set of counterexample classes, each of which describes a distinct type of violating behavior for the given specification. These classes are then presented as a summary of possible violating behaviors in the system, freeing the user from manually having to inspect or analyze numerous counterexamples to extract the same information. We have implemented a prototype of our technique on top of an existing formal modeling and verification tool, the Alloy Analyzer, and evaluated the effectiveness of the technique on case studies involving the well-known Needham-Schroeder and TCP protocols with promising results.
引用
收藏
页码:455 / 472
页数:18
相关论文
共 50 条
  • [1] Counterexample Classification
    Vick, Cole
    Kang, Eunsuk
    Tripakis, Stavros
    [J]. SOFTWARE ENGINEERING AND FORMAL METHODS (SEFM 2021), 2021, 13085 : 312 - 331
  • [2] Counterexample classification
    Cole Vick
    Eunsuk Kang
    Stavros Tripakis
    [J]. Software and Systems Modeling, 2024, 23 : 455 - 472
  • [3] COUNTEREXAMPLE IN CLASSIFICATION OF OPEN RIEMANN SURFACES
    KWON, YK
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 42 (02) : 583 - 587
  • [4] ON CLASSIFICATION OF TENT MAPS INVERSE LIMITS: A COUNTEREXAMPLE
    Crepnjak, Matevz
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (04): : 1215 - 1225
  • [5] COUNTEREXAMPLE TO A CLASSIFICATION THEOREM OF LINEARLY STABLE POLYTOPES
    ASSAF, D
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1976, 28 (01): : 92 - 93
  • [6] CLASSIFICATION OF REAL QUADRATIC-FORMS - A COUNTEREXAMPLE TO FINITENESS
    JAQUETCHIFFELLE, DO
    SIGRIST, F
    [J]. ACTA ARITHMETICA, 1994, 68 (03) : 291 - 294
  • [7] A Counterexample to A
    Hermes, Charles
    [J]. PHILOSOPHIA, 2014, 42 (02) : 387 - 389
  • [8] Simple counterexample for the ℒ2 classification of topological insulators based on the bulk–boundary correspondence
    S. N. Molotkov
    M. I. Ryzhkin
    [J]. JETP Letters, 2015, 102 : 189 - 197
  • [9] COUNTEREXAMPLE
    ARNOLD, J
    BOISEN, MB
    ASCHER, M
    CULL, P
    DRISCOLL, RJ
    ELSNER, L
    HAJEK, O
    JAGERS, AA
    LANTZ, DC
    LAUGWITZ, D
    ODONI, RWK
    STRATTON, AE
    ROBINSON, DW
    SINGLETON, R
    TAYLOR, W
    YOCOM, K
    DIXON, ED
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (04): : 311 - 312
  • [10] A Counterexample to A
    Charles Hermes
    [J]. Philosophia, 2014, 42 : 387 - 389