Research on Optimal Operation of Regional Integrated Energy Systems in View of Demand Response and Improved Carbon Trading

被引:6
|
作者
Zhang, Yu [1 ,2 ]
Liu, Zhongxiang [1 ]
Wu, Yuhu [1 ]
Li, Lianmin [1 ]
机构
[1] Guilin Univ Technol, Coll Mech & Control Engn, Guilin 541006, Peoples R China
[2] Guangxi Key Lab New Energy & Bldg Energy Saving, Guilin 541004, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 11期
关键词
improved carbon trading mechanism; regional integrated energy system; improved user satisfaction model; demand response; base-line method; Monte Carlo method; POWER DISPATCH; PREDICTION; LOAD;
D O I
10.3390/app13116561
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In order to solve the difficulties of dispatching the regional integrated energy system (RIES) under the operating conditions of multi-energy complementary mechanisms, as well as to achieve the purpose of economic operation and low carbon operation of the system, an optimal dispatching model of RIES, including demand response (DR) and an improved carbon trading mechanism (ICTM), is proposed. Firstly, a demand response model is established, the cooling, thermal, electricity, and gas load models under demand response are built, and then an improved customer satisfaction model is proposed based on the four demand response load models. In addition, since EV trips fit a normal distribution, the charging load of EVs is predicted using a Monte Carlo method and incorporated into RIES as a demand-side load; moreover, for EVs, an improved genetic algorithm is used to optimize EV charging, aiming to reduce the peak-to-valley difference; secondly, carbon emission quotas are provided for systems and EVs based on the baseline method and gratuitous allocation, and a carbon trading model is constructed based on carbon quotas and actual A carbon trading model for the system and EV is constructed based on the carbon allowances and actual carbon emissions; finally, four operation scenarios are set up in this paper, and the unit output scheme is developed with the objective of achieving the lowest total system operation cost and lowest carbon emissions. The four typical scenarios are solved using the MATLAB/CPLEX solver and compared for analysis. The simulation results show that an improved genetic algorithm for optimizing the ordered charging method of electric vehicle charging reduces the peak valley difference by 23.06%, and the total operation cost and carbon transaction cost are reduced by 16.13% and 83.10%, respectively, which can provide a reference for the environmental protection and economic dispatch of RIES.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Optimal operation of integrated energy systems considering energy trading and integrated demand response
    Xiong, Zhijie
    Zhang, Dawei
    Wang, Yanfeng
    [J]. ENERGY REPORTS, 2024, 11 : 3307 - 3316
  • [2] Optimal dispatch of integrated energy systems considering integrated demand response and stepped carbon trading
    Ye, Xianglei
    Ji, Zhenya
    Xu, Jinxing
    Liu, Xiaofeng
    [J]. FRONTIERS IN ELECTRONICS, 2023, 4
  • [3] Optimal configuration and operation of the regional integrated energy system considering carbon emission and integrated demand response
    Zeng, Xianqiang
    Wang, Jin
    Zhou, Yun
    Li, Hengjie
    [J]. FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [4] Optimal operation of regional integrated energy system considering demand response
    Guo, Zihao
    Zhang, Ren
    Wang, Li
    Zeng, Shunqi
    Li, Yajun
    [J]. APPLIED THERMAL ENGINEERING, 2021, 191
  • [5] Operation Optimization of Regional Integrated Energy Systems with Hydrogen by Considering Demand Response and Green Certificate-Carbon Emission Trading Mechanisms
    Li, Ji
    Xu, Lei
    Wang, Lihua
    Kou, Yang
    Huo, Yingli
    Liang, Weile
    [J]. ENERGIES, 2024, 17 (13)
  • [6] Research on multi-energy collaborative operation optimization of integrated energy system considering carbon trading and demand response
    Yang, Meng
    Liu, Yisheng
    [J]. ENERGY, 2023, 283
  • [7] Optimal scheduling of integrated energy systems with a ladder-type carbon trading mechanism and demand response
    Shi, Linjun
    Liang, Changyu
    Zhou, Jianhua
    Li, Yang
    Liu, Jian
    Wu, Feng
    [J]. FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [8] Optimal Operation of Regional Integrated Energy System Considering Integrated Demand Response and Exergy Efficiency
    Jing Wang
    Haijun Xing
    Huaxin Wang
    Baojiang Xie
    Yangfan Luo
    [J]. Journal of Electrical Engineering & Technology, 2022, 17 : 2591 - 2603
  • [9] Optimal Operation of Regional Integrated Energy System Considering Integrated Demand Response and Exergy Efficiency
    Wang, Jing
    Xing, Haijun
    Wang, Huaxin
    Xie, Baojiang
    Luo, Yangfan
    [J]. Journal of Electrical Engineering and Technology, 2022, 17 (05): : 2591 - 2603
  • [10] Optimal Operation of Regional Integrated Energy System Considering Integrated Demand Response and Exergy Efficiency
    Wang, Jing
    Xing, Haijun
    Wang, Huaxin
    Xie, Baojiang
    Luo, Yangfan
    [J]. JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (05) : 2591 - 2603