ERROR ESTIMATE OF MULTISCALE FINITE ELEMENT METHOD FOR PERIODIC MEDIA REVISITED

被引:2
|
作者
Ming, Pingbing [1 ,2 ]
Song, Siqi [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC, AMSS, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
来源
MULTISCALE MODELING & SIMULATION | 2024年 / 22卷 / 01期
关键词
multiscale PDEs; multiscale finite element method; homogenization; error estimate; oversampling; ELLIPTIC PROBLEMS; CONVERGENCE; HOMOGENIZATION; EQUATIONS; SYSTEMS;
D O I
10.1137/22M1511060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive the optimal energy error estimate for a multiscale finite element method with oversampling technique applied to an elliptic system with rapidly oscillating periodic coefficients under the assumption that the coefficients are bounded and measurable, which may admit rough microstructures. As a byproduct of the energy error estimate, we derive the rate of convergence in the L d/(d - 1) -norm.
引用
收藏
页码:106 / 124
页数:19
相关论文
共 50 条