On the (1+4)-body problem with J2 potential

被引:0
|
作者
Gauthier, Ryan [1 ]
Stoica, Cristina [1 ]
机构
[1] Wilfrid Laurier Univ, Dept Math, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
n-body problem; Square homographic motions; Saddle-node bifurcation; J(2) perturbation; Relative equilibria; Stability; 4-BODY PROBLEM; STABILITY; SURFACES;
D O I
10.1007/s10509-023-04227-w
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the (1 + 4)-body problem with a Newtonian potential augmented by a "J(2)" inverse-cubic perturbation. We describe the square-shaped homographic motions, and we find a saddle-centre bifurcation of the rotating equilibria (RE). Further, we prove that for a sufficiently small perturbation, all square-shaped RE are unstable.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Exchange orbits in the planar 1+4 body problem
    Bengochea, A.
    Galan, J.
    Perez-Chavela, E.
    PHYSICA D-NONLINEAR PHENOMENA, 2015, 301 : 21 - 35
  • [2] On the existence of the relative equilibria of a rigid body in the J2 problem
    Yue Wang
    Shijie Xu
    Liang Tang
    Astrophysics and Space Science, 2014, 353 : 425 - 440
  • [3] A NONCANONICAL ANALYTIC SOLUTION TO THE J2 PERTURBED 2-BODY PROBLEM
    JEZEWSKI, DJ
    CELESTIAL MECHANICS, 1983, 30 (04): : 343 - 361
  • [4] Symmetry, reduction and relative equilibria of a rigid body in the J2 problem
    Wang, Yue
    Xu, Shijie
    ADVANCES IN SPACE RESEARCH, 2013, 51 (07) : 1096 - 1109
  • [5] Stability of the classical type of relative equilibria of a rigid body in the J2 problem
    Yue Wang
    Shijie Xu
    Astrophysics and Space Science, 2013, 346 : 443 - 461
  • [6] Bounds on Relative Distance in the J2 Problem
    Nie, Tao
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2024, 47 (01) : 165 - 174
  • [7] A simple intermediary orbit for the J2 problem
    Oberti, P
    ASTRONOMY & ASTROPHYSICS, 2005, 437 (01): : 333 - 338
  • [8] A simple intermediary orbit for the J2 problem
    Oberti, P.
    Astronomy and Astrophysics, 1600, 437 (01): : 333 - 338
  • [9] (J2 = ±1)-metric manifolds
    Etayo, F
    Santamaría, R
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 57 (3-4): : 435 - 444
  • [10] On the ranks of Janko groups J1, J2, J3 and J4
    Ali, Faryad
    Moori, Jamshid
    QUAESTIONES MATHEMATICAE, 2008, 31 (01) : 37 - 44