Solar Cycle 25 Prediction Using N-BEATS

被引:7
|
作者
Su, Xu [1 ]
Liang, Bo [1 ]
Feng, Song [1 ]
Dai, Wei [1 ]
Yang, Yunfei [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Peoples R China
来源
ASTROPHYSICAL JOURNAL | 2023年 / 947卷 / 02期
关键词
LENGTH;
D O I
10.3847/1538-4357/acc799
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Solar activities lead to Sun variation with an 11 yr periodicity. The periodic variation affects space weather and heliophysics research. So it is important to accurately predict solar cycle variations. In this paper, we predicted the ongoing Solar Cycle 25 using neural basis expansion analysis for the interpretable time series deep learning method. 13 months of smoothed monthly total sunspot numbers taken by sunspot Index and Long-term Solar Observations are selected to train and evaluate our model. We used root mean square error (RMSE) and mean absolute time lag (MATL) to evaluate our model performance. RMSE and MATL measure the difference between our predicted values and the actual values along the Y- and X-axis, respectively. The RMSE value is 26.62 +/- 1.56 and the MATL value is 1.34 +/- 0.35, demonstrating that our model is able to better predict sunspot number variation. Finally, we predicted the variation of the sunspot numbers for Solar Cycle 25 using the model. The sunspot number of Solar Cycle 25 will peak around 2024 February with an amplitude of 133.9 +/- 7.2. This means that Solar Cycle 25 will be slightly more intense than Solar Cycle 24.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Forecasting Meteorological Solar Irradiation Using Machine Learning and N-BEATS Architecture
    Anwar, Md. Tawhid
    Islam, Md. Farhadul
    Alam, Md. Golam Rabiul
    [J]. PROCEEDINGS OF 2023 8TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2023, 2023, : 46 - 53
  • [2] Prediction and Detection of Sewage Treatment Process Using N-BEATS Autoencoder Network
    Zhang, Yue
    Suzuki, Genki
    Shioya, Hiroyuki
    [J]. IEEE ACCESS, 2022, 10 : 112594 - 112608
  • [3] N-BEATS for Heart Dysfunction Classification
    Puszkarski, Bartosz
    Hryniow, Krzysztof
    Sarwas, Grzegorz
    [J]. 2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [4] Probabilistic Forecasting With Modified N-BEATS Networks
    Van Belle, Jente
    Crevits, Ruben
    Caljon, Daan
    Verbeke, Wouter
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [5] Using N-BEATS ensembles to predict automated guided vehicle deviation
    Amit Karamchandani
    Alberto Mozo
    Stanislav Vakaruk
    Sandra Gómez-Canaval
    J. Enrique Sierra-García
    Antonio Pastor
    [J]. Applied Intelligence, 2023, 53 : 26139 - 26204
  • [6] Using N-BEATS ensembles to predict automated guided vehicle deviation
    Karamchandani, Amit
    Mozo, Alberto
    Vakaruk, Stanislav
    Gomez-Canaval, Sandra
    Sierra-Garcia, J. Enrique
    Pastor, Antonio
    [J]. APPLIED INTELLIGENCE, 2023, 53 (21) : 26139 - 26204
  • [7] A wind power prediction model based on optimized N-BEATS network with multivariate inputs
    Jun L, I
    Tao LIN
    Hui DU
    Qingyan Li
    Xiyue FU
    Xialing XU
    [J]. 2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [8] N-Beats as an EHG Signal Forecasting Method for Labour Prediction in Full Term Pregnancy
    Jossou, Thierry Rock
    Tahori, Zakaria
    Houdji, Godwin
    Medenou, Daton
    Lasfar, Abdelali
    Sanya, Frejus
    Ahouandjinou, Metowanou Heribert
    Pagliara, Silvio M.
    Haleem, Muhammad Salman
    Et-Tahir, Aziz
    [J]. ELECTRONICS, 2022, 11 (22)
  • [9] Solar Cycle 25 prediction
    不详
    [J]. WEATHER, 2020, 75 (03) : 71 - 71
  • [10] Solar Cycle Pairing and Prediction of Cycle 25
    Nagovitsyn, Y. A.
    Ivanov, V. G.
    [J]. SOLAR PHYSICS, 2023, 298 (03)