Hardy inequalities on metric measure spaces, IV: The case p=1

被引:0
|
作者
Ruzhansky, Michael [2 ,3 ]
Shriwastawa, Anjali [1 ]
Tiwari, Bankteshwar [1 ]
机构
[1] Banaras Hindu Univ, DST Ctr Interdisciplinary Math Sci, Varanasi 221005, India
[2] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
[3] Queen Mary Univ London, Sch Math Sci, London, England
关键词
Integral Hardy inequalities; homogeneous Lie groups; metric measure spaces; quasi-norm; Riemannian manifold with negative curvature; hyperbolic spaces; SCALES;
D O I
10.1515/forum-2023-0319
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the two-weight Hardy inequalities on metric measure space possessing polar decompositions for the case p=1 and 1 <= q<infinity. This result complements the Hardy inequalities obtained in [M. Ruzhansky and D. Verma, Hardy inequalities on metric measure spaces, Proc. Roy. Soc. A. 475 2019, 2223, Article ID 20180310] in the case 1<p <= q<infinity . The case p=1 requires a different argument and does not follow as the limit of known inequalities for p>1 . As a byproduct, we also obtain the best constant in the established inequality. We give examples obtaining new weighted Hardy inequalities on homogeneous Lie groups, on hyperbolic spaces and on Cartan-Hadamard manifolds for the case p=1 and 1 <= q<infinity.
引用
收藏
页码:1603 / 1611
页数:9
相关论文
共 50 条
  • [1] Hardy inequalities on metric measure spaces, II: the case p &gt; q
    Ruzhansky, Michael
    Verma, Daulti
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2250):
  • [2] Hardy inequalities on metric measure spaces
    Ruzhansky, Michael
    Verma, Daulti
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2223):
  • [3] Hardy inequalities on metric measure spaces, III: the case q ≤ p ≤ 0 and applications
    Kassymov, A.
    Ruzhansky, M.
    Suragan, D.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2269):
  • [4] Hardy and Rellich type inequalities on metric measure spaces
    Du, Feng
    Mao, Jing
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (01) : 354 - 365
  • [5] Hardy type identities and inequalities with divergence type operators on smooth metric measure spaces
    Wang, Pengyan
    Wang, Jiahao
    [J]. AIMS MATHEMATICS, 2024, 9 (06): : 16354 - 16375
  • [6] Coercive inequalities on metric measure spaces
    Hebisch, W.
    Zegarlinski, B.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (03) : 814 - 851
  • [7] THE HARDY TYPE INEQUALITY ON METRIC MEASURE SPACES
    Du, Feng
    Mao, Jing
    Wang, Qiaoling
    Wu, Chuanxi
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (06) : 1359 - 1380
  • [8] Fractional Poincare and localized Hardy inequalities on metric spaces
    Dyda, Bartlomiej
    Lehrback, Juha
    Vahakangas, Antti V.
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2023, 16 (04) : 867 - 884
  • [9] Hardy spaces H~p over non-homogeneous metric measure spaces and their applications
    FU Xing
    LIN Hai Bo
    YANG Da Chun
    YANG Dong Yong
    [J]. Science China Mathematics, 2015, 58 (02) : 309 - 388
  • [10] Hardy spaces H p over non-homogeneous metric measure spaces and their applications
    Fu Xing
    Lin HaiBo
    Yang DaChun
    Yang DongYong
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (02) : 309 - 388