Flexible strain sensors with high sensitivity and large monitoring range prepared by biaxially stretching conductive polymer composites with a bilayer structure

被引:4
|
作者
Li, Jiayi [1 ]
Xiang, Dong [1 ,2 ,3 ]
Zhao, Chunxia [1 ,2 ,3 ]
Li, Hui [1 ,2 ,3 ]
Zhou, Lihua [1 ,2 ,3 ]
Wang, Li [1 ,2 ,3 ]
Yan, Guilong [1 ,2 ,3 ]
Li, Zhenyu [1 ,2 ,3 ]
Wang, Ping [1 ]
Wang, Bin [1 ,2 ,3 ]
Wu, Yuanpeng [1 ,2 ,3 ]
机构
[1] Southwest Petr Univ, Sch New Energy & Mat, Chengdu 610500, Peoples R China
[2] Southwest Petr Univ, Ctr Funct Mat Working Fluids Oil & Gas Field, Sichuan Engn Technol Res Ctr Basalt Fiber Composit, Chengdu, Peoples R China
[3] Southwest Petr Univ, Collaborat Sci Innovat Platform Univ Sichuan Basal, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
biaxial stretching; bilayer structure; carbon nanotubes; conductive polymer composites; strain sensor; NANOTUBE; FILM;
D O I
10.1002/app.54718
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In order to prepare a flexible strain sensor with a large monitoring range, high sensitivity and excellent stability, a polyolefin elastomer (POE)/carbon nanotubes (CNTs) conductive polymer composite with a bilayer structure was prepared by biaxially stretching in this work. The results showed that the bilayer structured nanocomposites had better processability and better stability than monolayer CNT/POE nanocomposites during biaxial stretching. The biaxial stretching process could promote the dispersion and planar orientation of CNTs within the polymer, improving the crystallinity of nanocomposites and the sensing performance of strain sensors. The optimal stretching ratios (SRs) of bilayer structured nanocomposites were studied. The 8 wt% CNT/POE-POE strain sensor with an SR of 2.5 exhibited a high sensitivity (gauge factor/GF = 72604.7 at 900% strain), wide strain range (0%-900%), and stable cycling performance (1000 cycles at 30% strain), showing a broad application prospect in wearable electronic devices. This study provides a valuable method for efficiently manufacturing high performance and low-cost flexible strain sensors. High-performance flexible strain sensors were prepared by bixially stretching a bilayer structured CNT/POE composites.image
引用
收藏
页数:11
相关论文
共 50 条
  • [1] High-performance flexible strain sensors prepared by biaxially stretching conductive polymer composites with a double-layer structure
    Li, Jiayi
    Xiang, Dong
    Su, Peng
    Zhao, Chunxia
    Li, Hui
    Li, Zhenyu
    Wang, Bin
    Wang, Ping
    Li, Yuntao
    Wu, Yuanpeng
    MATERIALS TODAY COMMUNICATIONS, 2023, 36
  • [2] Flexible Conductive Polymer Composites in Strain Sensors
    Pan, Zhaoying
    Ma, Jianzhong
    Zhang, Wenbo
    Wei, Linfeng
    PROGRESS IN CHEMISTRY, 2020, 32 (10) : 1592 - 1607
  • [3] Flexible strain sensors with high sensitivity and large working range prepared from biaxially stretched carbon nanotubes/polyolefin elastomer nanocomposites
    Xiang, Dong
    Chen, Xiaoyu
    Li, Jiayi
    Wu, Yuanpeng
    Zhao, Chunxia
    Li, Hui
    Li, Zhenyu
    Wang, Li
    Wang, Ping
    Li, Yuntao
    Wang, Junjie
    JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140 (04)
  • [4] Conductive polymer composites for resistive flexible strain sensors
    Yi, Haokun
    Wang, Shengjie
    Mei, Shuxing
    Li, Zhuo
    POLYMER, 2024, 307
  • [5] Flexible conductive polymer composites for smart wearable strain sensors
    Zhou, Kangkang
    Dai, Kun
    Liu, Chuntai
    Shen, Changyu
    SMARTMAT, 2020, 1 (01):
  • [6] High-performance flexible strain sensors based on biaxially stretched conductive polymer composites with carbon nanotubes immobilized on reduced graphene oxide
    Zhang, Xuezhong
    Xiang, Dong
    Wu, Yuanpeng
    Harkin-Jones, Eileen
    Shen, Jiabin
    Ye, Yong
    Tan, Wei
    Wang, Junjie
    Wang, Ping
    Zhao, Chunxia
    Li, Yuntao
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2021, 151
  • [7] Research Progress of Conductive Polymer Composites for Resistive Flexible Strain Sensors
    Ren Q.
    Wang J.
    Yang L.
    Li X.
    Wang X.
    Cailiao Daobao/Materials Reports, 2020, 34 (01): : 01080 - 01094
  • [8] Electrically conductive polymer composites for smart flexible strain sensors: a critical review
    Liu, Hu
    Li, Qianming
    Zhang, Shuaidi
    Yin, Rui
    Liu, Xianhu
    He, Yuxin
    Dai, Kun
    Shan, Chongxin
    Guo, Jiang
    Liu, Chuntai
    Shen, Changyu
    Wang, Xiaojing
    Wang, Ning
    Wang, Zicheng
    Wei, Renbo
    Guo, Zhanhu
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (45) : 12121 - 12141
  • [9] A simple and cost-effective method for improving the sensitivity of flexible strain sensors based on conductive polymer composites
    Guo, Dengji
    Pan, Xudong
    He, Hu
    SENSORS AND ACTUATORS A-PHYSICAL, 2019, 298
  • [10] Effects of service condition on the performance of conductive polymer composites for flexible strain sensors
    Guo, Dengji
    Pan, Xudong
    Xie, Yu
    Liu, Yifei
    He, Hu
    SENSORS AND ACTUATORS A-PHYSICAL, 2021, 318