y-Tuning: an efficient tuning paradigm for large-scale pre-trained models via label representation learning

被引:0
|
作者
Liu, Yitao [1 ]
An, Chenxin [1 ]
Qiu, Xipeng [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
pre-trained model; lightweight fine-tuning paradigms; label representation;
D O I
10.1007/s11704-023-3131-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With current success of large-scale pre-trained models (PTMs), how efficiently adapting PTMs to downstream tasks has attracted tremendous attention, especially for PTMs with billions of parameters. Previous work focuses on designing parameter-efficient tuning paradigms but needs to save and compute the gradient of the whole computational graph. In this paper, we propose y-Tuning, an efficient yet effective paradigm to adapt frozen large-scale PTMs to specific downstream tasks. y-Tuning learns dense representations for labels y defined in a given task and aligns them to fixed feature representation. Without computing the gradients of text encoder at training phrase, y-Tuning is not only parameter-efficient but also training-efficient. Experimental results show that for DeBERTa(XXL) with 1.6 billion parameters, y-Tuning achieves performance more than 96% of full fine-tuning on GLUE Benchmark with only 2% tunable parameters and much fewer training costs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Parameter-efficient fine-tuning of large-scale pre-trained language models
    Ning Ding
    Yujia Qin
    Guang Yang
    Fuchao Wei
    Zonghan Yang
    Yusheng Su
    Shengding Hu
    Yulin Chen
    Chi-Min Chan
    Weize Chen
    Jing Yi
    Weilin Zhao
    Xiaozhi Wang
    Zhiyuan Liu
    Hai-Tao Zheng
    Jianfei Chen
    Yang Liu
    Jie Tang
    Juanzi Li
    Maosong Sun
    Nature Machine Intelligence, 2023, 5 : 220 - 235
  • [2] Parameter-efficient fine-tuning of large-scale pre-trained language models
    Ding, Ning
    Qin, Yujia
    Yang, Guang
    Wei, Fuchao
    Yang, Zonghan
    Su, Yusheng
    Hu, Shengding
    Chen, Yulin
    Chan, Chi-Min
    Chen, Weize
    Yi, Jing
    Zhao, Weilin
    Wang, Xiaozhi
    Liu, Zhiyuan
    Zheng, Hai-Tao
    Chen, Jianfei
    Liu, Yang
    Tang, Jie
    Li, Juanzi
    Sun, Maosong
    NATURE MACHINE INTELLIGENCE, 2023, 5 (03) : 220 - +
  • [3] Debiasing Pre-Trained Language Models via Efficient Fine-Tuning
    Gira, Michael
    Zhang, Ruisu
    Lee, Kangwook
    PROCEEDINGS OF THE SECOND WORKSHOP ON LANGUAGE TECHNOLOGY FOR EQUALITY, DIVERSITY AND INCLUSION (LTEDI 2022), 2022, : 59 - 69
  • [4] Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs
    You, Kaichao
    Liu, Yong
    Zhang, Ziyang
    Wang, Jianmin
    Jordan, Michael I.
    Long, Mingsheng
    Journal of Machine Learning Research, 2022, 23
  • [5] Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs
    You, Kaichao
    Liu, Yong
    Zhang, Ziyang
    Wang, Jianmin
    Jordan, Michael I.
    Long, Mingsheng
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [6] Bi-tuning: Efficient Transfer from Pre-trained Models
    Zhong, Jincheng
    Ma, Haoyu
    Wang, Ximei
    Kou, Zhi
    Long, Mingsheng
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT V, 2023, 14173 : 357 - 373
  • [7] Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{Y}$$\end{document}-Tuning: an efficient tuning paradigm for large-scale pre-trained models via label representation learning
    Yitao Liu
    Chenxin An
    Xipeng Qiu
    Frontiers of Computer Science, 2024, 18 (4)
  • [8] Prompt Tuning for Discriminative Pre-trained Language Models
    Yao, Yuan
    Dong, Bowen
    Zhang, Ao
    Zhang, Zhengyan
    Xie, Ruobing
    Liu, Zhiyuan
    Lin, Leyu
    Sun, Maosong
    Wang, Jianyong
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), 2022, : 3468 - 3473
  • [9] Tuning Pre-trained Model via Moment Probing
    Gao, Mingze
    Wang, Qilong
    Lin, Zhenyi
    Zhu, Pengfei
    Hu, Qinghua
    Zhou, Jingbo
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 11769 - 11779
  • [10] Dialog summarization for software collaborative platform via tuning pre-trained models
    Fan, Guodong
    Chen, Shizhan
    Wu, Hongyue
    Gao, Cuiyun
    Xiao, Jianmao
    Xue, Xiao
    Feng, Zhiyong
    JOURNAL OF SYSTEMS AND SOFTWARE, 2023, 204