Text classification based on PEGCN: Graph convolution classification using location information and edge features

被引:2
|
作者
Zhang, Ruidong [1 ]
Guo, Zelin [2 ]
Huan, Hai [1 ,3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Artificial Intelligence, Nanjing, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Elect & Informat Engn, Nanjing, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Artificial Intelligence, Nanjing 210044, Peoples R China
关键词
deep learning; graph convolutional networks; natural language processing; text classification;
D O I
10.1111/exsy.13511
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purpose of text classification is to label the text with known labels. In recent years, the method based on graph neural network (GNN) has achieved good results. However, the existing methods based on GNN only regard the text as the set of co-occurring words, without considering the position information of each word in the statement. At the same time, the method mainly extracts the node features in the graph, and the edge features between the nodes are not used enough. To solve these problems, a new text classification method, graph convolutional network using positions and edges, is proposed. In the word embedding section, a positional encoding input representation is employed to enable the neural network to learn the relative positional information among words. Meanwhile, the dimension of the adjacency matrix is increased to extract the multi-dimensional edge features. Through experiments on multiple text classification datasets, the proposed method is shown to be superior to the traditional text classification method, and has achieved a maximum improvement of more than 4%.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Text Classification Based on Graph Convolution Neural Network and Attention Mechanism
    Zhai, Sheping
    Zhang, Wenqing
    Cheng, Dabao
    Bai, Xiaoxia
    ACM International Conference Proceeding Series, 2022, : 137 - 142
  • [2] Heterogeneous Graph-Convolution-Network-Based Short-Text Classification
    Hua, Jiwei
    Sun, Debing
    Hu, Yanxiang
    Wang, Jiayu
    Feng, Shuquan
    Wang, Zhaoyang
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [3] Using Graph-Kernels to Represent Semantic Information in Text Classification
    Goncalves, Teresa
    Quaresma, Paulo
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, 2009, 5632 : 632 - 646
  • [4] Conceptual Graph Based Text Classification
    Wan, Yi
    He, Tingting
    Tu, Xinhui
    PROCEEDINGS OF 2014 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2014, : 104 - 113
  • [5] Text detection in images based on unsupervised classification of edge-based features
    Liu, CM
    Wang, CH
    Dai, RW
    EIGHTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 610 - 614
  • [6] Adaptive Convolution for Text Classification
    Choi, Byung-Ju
    Park, Jun-Hyung
    Lee, SangKeun
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 2475 - 2485
  • [7] Graph Neural Network via Edge Convolution for Hyperspectral Image Classification
    Hu, Haojie
    Yao, Minli
    He, Fang
    Zhang, Fenggan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [8] Text Classification Method Based on Convolution Neural Network
    Li, Lin
    Xiao, Linlong
    Wang, Nanzhi
    Yang, Guocai
    Zhang, Jianwu
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 1985 - 1989
  • [9] Fine-grained image classification based on TinyVit object location and graph convolution network
    Zheng, Shijie
    Wang, Gaocai
    Yuan, Yujian
    Huang, Shuqiang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 100
  • [10] Lithography Layout Classification Based on Graph Convolution Network
    Zhang, Junbi
    Ma, Xu
    Zhang, Shengen
    Zheng, Xianqiang
    Chen, Rui
    Pan, Yihua
    Dong, Lisong
    Wei, Yayi
    Arce, Gonzalo R.
    OPTICAL MICROLITHOGRAPHY XXXIV, 2021, 11613