A CNN-Based Method for Heavy-Metal Ion Detection

被引:3
|
作者
Zhang, Jian [1 ,2 ]
Chen, Feng [2 ]
Zou, Ruiyu [2 ]
Liao, Jianjun [1 ]
Zhang, Yonghui [1 ]
Zhu, Zeyu [2 ]
Yan, Xinyue [2 ]
Jiang, Zhiwen [2 ]
Tan, Fangzhou [2 ]
机构
[1] Hainan Univ, Sch Informat & Commun Engn, Haikou 570228, Peoples R China
[2] Hainan Univ, Sch Appl Sci & Technol, Haikou 570228, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 07期
基金
海南省自然科学基金;
关键词
heavy-metal ion detection; convolutional neural networks; electrochemical potentiostat; SCREEN-PRINTED ELECTRODES; VOLTAMMETRY; ALEXNET;
D O I
10.3390/app13074520
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Data processing is an essential component of heavy-metal ion detection. Most of the research now uses a conventional data-processing approach, which is inefficient and time-consuming. The development of an efficient and accurate automatic measurement method for heavy-metal ions has practical implications. This paper proposes a CNN-based heavy-metal ion detection system, which can automatically, accurately, and efficiently detect the type and concentration of heavy-metal ions. First, we used square-wave voltammetry to collect data from heavy-metal ion solutions. For this purpose, a portable electrochemical constant potential instrument was designed for data acquisition. Next, a dataset of 1200 samples was created after data preprocessing and data expansion. Finally, we designed a CNN-based detection network, called HMID-NET. HMID-NET consists of a backbone and two branch networks that simultaneously detect the type and concentration of the ions in the solution. The results of the assay on 12 sets of solutions with different ionic species and concentrations showed that the proposed HMID-NET algorithm ultimately obtained a classification accuracy of 99.99% and a mean relative error of 8.85% in terms of the concentration.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A CNN-based misleading video detection model
    Xiaojun Li
    Xvhao Xiao
    Jia Li
    Changhua Hu
    Junping Yao
    Shaochen Li
    Scientific Reports, 12
  • [32] CNN-based minor fabric defects detection
    Wen, Zhijie
    Zhao, Qikun
    Tong, Lining
    INTERNATIONAL JOURNAL OF CLOTHING SCIENCE AND TECHNOLOGY, 2021, 33 (01) : 1 - 12
  • [33] CNN-Based Fault Detection for Smart Manufacturing
    Neupane, Dhiraj
    Kim, Yunsu
    Seok, Jongwon
    Hong, Jungpyo
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [34] CNN-based Commercial Detection in TV Broadcasting
    Li, Mengyue
    Guo, Yuchun
    Chen, Yishuai
    PROCEEDINGS OF 2017 VI INTERNATIONAL CONFERENCE ON NETWORK, COMMUNICATION AND COMPUTING (ICNCC 2017), 2017, : 48 - 53
  • [35] CNN-based DGA Detection with High Coverage
    Zhou, Shaofang
    Lin, Lanfen
    Yuan, Junkun
    Wang, Feng
    Ling, Zhaoting
    Cui, Jia
    2019 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS (ISI), 2019, : 62 - 67
  • [36] Detection of symmetry axis by a CNN-based algorithm
    Costantini, G.
    Casali, D.
    PROCEEDINGS OF THE 11TH WSEAS INTERNATIONAL CONFERENCE ON CIRCUITS, VOL 1: CIRCUITS THEORY AND APPLICATIONS, 2007, : 46 - +
  • [37] CNN-BASED TARGET DETECTION IN HYPERSPECTRAL IMAGERY
    Du, Jinming
    Li, Zhiyong
    Sun, Hao
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2761 - 2764
  • [38] CNN-Based Microaneurysm Detection in Fundus Images
    Zhao, Xuegong
    Deng, Jiakun
    Wei, Haoran
    Peng, Zhenming
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2021, 50 (06): : 915 - 920
  • [39] A CNN-based misleading video detection model
    Li, Xiaojun
    Xiao, Xvhao
    Li, Jia
    Hu, Changhua
    Yao, Junping
    Li, Shaochen
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [40] An Improved Method for CNN-based Detection of Symmetry Axis in Black and White Images
    Casali, Daniele
    Costantini, Giovanni
    2008 11TH INTERNATIONAL WORKSHOP ON CELLULAR NEURAL NETWORKS AND THEIR APPLICATIONS, 2008, : 140 - 145