Estimation of the Modified Weibull Additive Hazards Regression Model under Competing Risks

被引:3
|
作者
Rehman, Habbiburr [1 ]
Chandra, Navin [2 ]
Emura, Takeshi [3 ]
Pandey, Manju [4 ,5 ]
机构
[1] Boston Univ, Chobanian & Avedisian Sch Med, Dept Med Biomed Genet, Boston, MA 02118 USA
[2] Pondicherry Univ, Ramanujan Sch Math Sci, Dept Stat, Pondicherry 605014, India
[3] Kurume Univ, Biostat Ctr, Kurume 8300011, Japan
[4] Banaras Hindu Univ, Inst Sci, Dept Zool, Varanasi 221005, India
[5] Banaras Hindu Univ, Inst Sci, DST Ctr Math Sci, Varanasi 221005, India
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 02期
关键词
cause-specific hazard; regression model; additive hazard; modified Weibull distribution; Bayes estimate; MCMC; SEMIPARAMETRIC ANALYSIS; PARAMETER-ESTIMATION; DISTRIBUTIONS;
D O I
10.3390/sym15020485
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The additive hazard regression model plays an important role when the excess risk is thequantity of interest compared to the relative risks, where the proportional hazard model is better.This paper discusses parametric regression analysis of survival data using the additive hazardsmodel with competing risks in the presence of independent right censoring. In this paper, thebaseline hazard function is parameterized using a modified Weibull distribution as a lifetime model.The model parameters are estimated using maximum likelihood and Bayesian estimation methods.We also derive the asymptotic confidence interval and the Bayes credible interval of the unknownparameters. The finite sample behaviour of the proposed estimators is investigated through a MonteCarlo simulation study. The proposed model is applied to liver transplant data.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Analysis and modelling of competing risks survival data using modified Weibull additive hazards regression approach
    Rehman, Habbiburr
    Chandra, Navin
    Abuzaid, Ali H.
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (05): : 1263 - 1281
  • [2] Competing risks regression for clustered survival data via the marginal additive subdistribution hazards model
    Chen, Xinyuan
    Esserman, Denise
    Li, Fan
    [J]. STATISTICA NEERLANDICA, 2024, 78 (02) : 281 - 301
  • [3] Analysis of competing risks data with missing cause of failure under additive hazards model
    Lu, Wenbin
    Liang, Yu
    [J]. STATISTICA SINICA, 2008, 18 (01) : 219 - 234
  • [4] Additive subdistribution hazards regression for competing risks data in case-cohort studies
    Wogu, Adane F.
    Li, Haolin
    Zhao, Shanshan
    Nichols, Hazel B.
    Cai, Jianwen
    [J]. BIOMETRICS, 2023, 79 (04) : 3010 - 3022
  • [5] Modeling and Analysis of Competing Risks Cure Rate Regression Model with Weibull Distribution
    Sankaran, P. G.
    Rejani, P. P.
    [J]. STATISTICS AND APPLICATIONS, 2022, 20 (02): : 265 - 277
  • [6] Estimation in a competing risks proportional hazards model under length-biased sampling with censoring
    Dauxois, Jean-Yves
    Guilloux, Agathe
    Kirmani, Syed N. U. A.
    [J]. LIFETIME DATA ANALYSIS, 2014, 20 (02) : 276 - 302
  • [7] Estimation in a competing risks proportional hazards model under length-biased sampling with censoring
    Jean-Yves Dauxois
    Agathe Guilloux
    Syed N. U. A. Kirmani
    [J]. Lifetime Data Analysis, 2014, 20 : 276 - 302
  • [8] Competing Hazards Regression Parameter Estimation Under Different Informative Priors
    Rehman, H.
    Chandra, Navin
    Hosseini-Baharanchi, Fatemeh Sadat
    Baghestani, Ahmad Reza
    [J]. JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2020, 13 (02): : 325 - 348
  • [9] Additive hazards model for competing risks analysis of the case-cohort design
    Sun, JG
    Sun, LQ
    Flournoy, N
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (02) : 351 - 366
  • [10] Estimation of Weibull parameters for grouped data with competing risks
    Qian, LF
    Correa, JA
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2003, 73 (04) : 261 - 275