GALOIS REPRESENTATIONS FOR EVEN GENERAL SPECIAL ORTHOGONAL GROUPS

被引:0
|
作者
Kret, Arno [1 ]
Shin, Sug Woo [2 ,3 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst, Sci Pk 105, NL-1090 GE Amsterdam, Netherlands
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Korea Inst Adv Study, 85 Hoegiro, Seoul 130722, South Korea
关键词
Galois representations; Shimura varieties; Automorphic forms; Even orthogonal groups; SHIMURA VARIETIES; ELEMENT-CONJUGATE; COHOMOLOGY; AUTOMORPHY; SUBGROUPS; G(2);
D O I
10.1017/S1474748023000427
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of $\mathrm {GSpin}_{2n}$-valued Galois representations corresponding to cohomological cuspidal automorphic representations of certain quasi-split forms of ${\mathrm {GSO}}_{2n}$ under the local hypotheses that there is a Steinberg component and that the archimedean parameters are regular for the standard representation. This is based on the cohomology of Shimura varieties of abelian type, of type $D<^>{\mathbb {H}}$, arising from forms of ${\mathrm {GSO}}_{2n}$. As an application, under similar hypotheses, we compute automorphic multiplicities, prove meromorphic continuation of (half) spin L-functions and improve on the construction of ${\mathrm {SO}}_{2n}$-valued Galois representations by removing the outer automorphism ambiguity.
引用
收藏
页数:92
相关论文
共 50 条
  • [1] Induced orthogonal representations of Galois groups
    Michailov, Ivo M.
    [J]. JOURNAL OF ALGEBRA, 2009, 322 (10) : 3713 - 3732
  • [2] Galois cohomology of special orthogonal groups
    Ryan Garibaldi
    Jean-Pierre Tignol
    Adrian R. Wadsworth
    [J]. manuscripta mathematica, 1997, 93 : 247 - 266
  • [3] Galois cohomology of special orthogonal groups
    Garibaldi, R
    Tignol, JP
    Wadsworth, AR
    [J]. MANUSCRIPTA MATHEMATICA, 1997, 93 (02) : 247 - 266
  • [4] Galois representations for general symplectic groups
    Kret, Arno
    Shin, Sug Woo
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (01) : 75 - 152
  • [5] GEOMETRIZING THE MINIMAL REPRESENTATIONS OF EVEN ORTHOGONAL GROUPS
    Lafforgue, Vincent
    Lysenko, Sergey
    [J]. REPRESENTATION THEORY, 2013, 17 : 263 - 325
  • [6] On CAP Representations for Even Orthogonal Groups I:A Correspondence of Unramified Representations
    David GINZBURG
    Dihua JIANG
    David SOUDRY
    [J]. Chinese Annals of Mathematics,Series B, 2015, 36 (04) : 485 - 522
  • [7] On CAP representations for even orthogonal groups I: A correspondence of unramified representations
    David Ginzburg
    Dihua Jiang
    David Soudry
    [J]. Chinese Annals of Mathematics, Series B, 2015, 36 : 485 - 522
  • [8] On CAP Representations for Even Orthogonal Groups I: A Correspondence of Unramified Representations
    Ginzburg, David
    Jiang, Dihua
    Soudry, David
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (04) : 485 - 522
  • [9] SPECIAL REPRESENTATIONS OF RANK ONE ORTHOGONAL GROUPS
    PIATETSKISHAPIRO, II
    SOUDRY, D
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1988, 64 (03) : 276 - 314
  • [10] ON POLYNOMIAL REPRESENTATIONS AND FILTRATIONS FOR THE SPECIAL ORTHOGONAL GROUPS
    MALIAKAS, M
    [J]. JOURNAL OF ALGEBRA, 1994, 168 (01) : 143 - 171