Removal of Tellurium(IV) from environmental aquatic systems using metal-organic framework material MIL-100(Fe)

被引:0
|
作者
Huang, Yiru [1 ]
Li, Youyou [1 ]
Zhong, Qingwei [1 ]
Luo, Cheng [1 ]
机构
[1] Civil Aviat Flight Univ China, Coll Air Traff Management, Guanghan 618307, Sichuan, Peoples R China
关键词
environmental aquatic; metal-organic framework material; removal; Tellurium(IV); ADSORPTION; WATER; IONS; NANOPARTICLES; FABRICATION; SEPARATION; EXTRACTION; ARSENATE; SORPTION;
D O I
10.2166/wrd.2024.118
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Metal-organic framework (MOF) materials, characterized by their porosity and large specific surface areas, exhibit excellent adsorption properties. With the aim of removing Te(IV) from environmental aquatic systems, this study is the first to propose the use of MIL-100(Fe). The material reveals a strong adsorption capacity for Te(IV), with maximum adsorption of 531.9 mg/g, superior to other adsorbent materials. Adsorption isotherm models and kinetic models indicate that the adsorption process of Te(IV) primarily involves monolayer chemical adsorption. According to the thermodynamic parameters of Te(IV) adsorption on MIL-100(Fe), the adsorption reaction is endothermic. The experiment individually examined factors affecting the material's adsorption performance, including adsorbent dose, initial concentration of Te(IV), pH, adsorption time, and coexisting ions. Even under high ion strength conditions and high concentrations of coexisting ions, the material's adsorption efficiency for Te(IV) still reached over 95%. The material has been successfully applied to remove Te(IV) from lake water, river water, and seawater, yielding satisfactory results. Due to the high salinity and ionic strength of the solution, the removal efficiency of Te(IV) in the seawater matrix was slightly lower than that in freshwater (river and lake water). Thus, this material shows promise for the removal of Te(IV) from complex aquatic systems.
引用
收藏
页码:39 / 50
页数:12
相关论文
共 50 条
  • [1] Mesoporous metal-organic framework MIL-100(Fe) as drug carrier
    Mileo, Paulo G. M.
    Gomes, Diony N.
    Goncalves, Daniel, V
    Lucena, Sebastiao M. P.
    [J]. ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2021, 27 (07): : 1123 - 1135
  • [2] Metal-organic framework MIL-100(Fe) for artificial kidney application
    Yang, Cheng-Xiong
    Liu, Chang
    Cao, Yi-Meng
    Yan, Xiu-Ping
    [J]. RSC ADVANCES, 2014, 4 (77): : 40824 - 40827
  • [3] Mechanistic insights into the antibacterial property of MIL-100 (Fe) metal-organic framework
    Karmakar, Sankha
    Mukherjee, Munmun
    Bhattacharya, Proma
    Neogi, Sudarsan
    De, Sirshendu
    [J]. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (03):
  • [4] Selective ethylene tetramerization with actived metal-organic framework MIL-100(Fe)
    Han, Yang
    Zhang, Ying
    Guang, Xu
    Liu, Xiangyun
    Feng, Guangliang
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [5] Removal of Pharmaceuticals from an Aqueous Matrix by Adsorption on Metal-Organic Framework MIL-100(Cr)
    Matus, C.
    Baeza, P.
    Serrano-Lotina, A.
    Pasten, B.
    Ramirez, M. Fernanda
    Ojeda, J.
    Camu, E.
    [J]. WATER AIR AND SOIL POLLUTION, 2023, 234 (11):
  • [6] Metal-organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution
    Huo, Shu-Hui
    Yan, Xiu-Ping
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (15) : 7449 - 7455
  • [7] Delayed Drug Release Films Based on MIL-100(Fe) Metal-Organic Framework
    Pak, A. M.
    Vol'khina, T. N.
    Nelyubina, Yu. V.
    Novikov, V. V.
    [J]. RUSSIAN JOURNAL OF COORDINATION CHEMISTRY, 2024, 50 (01) : 15 - 20
  • [8] Unraveling the Water Adsorption Mechanism in the Mesoporous MIL-100(Fe) Metal-Organic Framework
    Mileo, Paulo G. M.
    Cho, Kyung Ho
    Park, Jaedeuk
    Devautour-Vinot, Sabine
    Chang, Jong-San
    Maurin, Guillaume
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (37): : 23014 - 23025
  • [9] A Hybrid Supercapacitor based on Porous Carbon and the Metal-Organic Framework MIL-100(Fe)
    Campagnol, Nicolo
    Romero-Vara, Ricardo
    Deleu, Willem
    Stappers, Linda
    Binnemans, Koen
    De Vos, Dirk E.
    Fransaer, Jan
    [J]. CHEMELECTROCHEM, 2014, 1 (07): : 1182 - 1188
  • [10] Mesoporous metal–organic framework MIL-100(Fe) as drug carrier
    Paulo G. M. Mileo
    Diony N. Gomes
    Daniel V. Gonçalves
    Sebastião M. P. Lucena
    [J]. Adsorption, 2021, 27 : 1123 - 1135