A Novel Machine Learning Approach for Identifying Subgroups With Differential Responses to Amiodarone in Patients With Cardiac Arrest With Shockable Rhythm

被引:0
|
作者
Nishikimi, Mitsuaki
Emoto, Ryo
Ohshimo, Shinichiro
Matsui, Shigeyuki
Shime, Nobuaki
机构
关键词
Amiodarone; Machine Learning; Precision medicine;
D O I
10.1161/circ.148.suppl_1.396
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
A396
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Identifying Subgroups with Differential Responses to Amiodarone among Cardiac Arrest Patients with a Shockable Rhythm at Hospital Arrival using the Machine Learning Approach
    Emoto, Ryo
    Nishikimi, Mitsuaki
    Kikutani, Kazuya
    Ishii, Junki
    Ohshimo, Shinichiro
    Matsui, Shigeyuki
    Shime, Nobuaki
    [J]. REVIEWS IN CARDIOVASCULAR MEDICINE, 2024, 25 (07)
  • [3] Sudden cardiac arrest with shockable rhythm in patients with heart failure
    Woolcott, Orison O.
    Reinier, Kyndaron
    Uy-Evanado, Audrey
    Nichols, Gregory A.
    Stecker, Eric C.
    Jui, Jonathan
    Chugh, Sumeet S.
    [J]. HEART RHYTHM, 2020, 17 (10) : 1672 - 1678
  • [4] Nifekalant Hydrochloride for Patients With Cardiac Arrest Caused by Shockable Rhythm
    Nagao, Ken
    [J]. CIRCULATION JOURNAL, 2010, 74 (11) : 2285 - 2287
  • [5] Lidocaine Versus Amiodarone For Pediatric In-hospital Cardiac Arrest With A Shockable Rhythm: An Observational Study
    Holmberg, Mathias Johan
    Ross, Catherine E.
    Atkins, Dianne L.
    Valdes, Santiago O.
    Donnino, Michael
    Andersen, Lars W.
    [J]. CIRCULATION, 2019, 140 (25) : E1009 - E1010
  • [6] Clustering out-of-hospital cardiac arrest patients with non-shockable rhythm by machine learning latent class analysis
    Okada, Yohei
    Komukai, Sho
    Kitamura, Tetsuhisa
    Kiguchi, Takeyuki
    Irisawa, Taro
    Yamada, Tomoki
    Yoshiya, Kazuhisa
    Park, Changhwi
    Nishimura, Tetsuro
    Ishibe, Takuya
    Yagi, Yoshiki
    Kishimoto, Masafumi
    Inoue, Toshiya
    Hayashi, Yasuyuki
    Sogabe, Taku
    Morooka, Takaya
    Sakamoto, Haruko
    Suzuki, Keitaro
    Nakamura, Fumiko
    Matsuyama, Tasuku
    Nishioka, Norihiro
    Kobayashi, Daisuke
    Matsui, Satoshi
    Hirayama, Atsushi
    Yoshimura, Satoshi
    Kimata, Shunsuke
    Shimazu, Takeshi
    Ohtsuru, Shigeru
    Iwami, Taku
    [J]. ACUTE MEDICINE & SURGERY, 2022, 9 (01):
  • [7] Early Epinephrine for In-Hospital Cardiac Arrest Patients With a Shockable Rhythm
    Andersen, Lars W.
    Kurth, Tobias
    Berg, Katherine
    Chase, Maureen
    Cocchi, Michael
    Donnino, Michael
    [J]. CIRCULATION, 2015, 132 (23) : 2282 - 2282
  • [8] Identifying Distinct Subgroups of ICU Patients: A Machine Learning Approach
    Vranas, Kelly C.
    Jopling, Jeffrey K.
    Sweeney, Timothy E.
    Ramsey, Meghan C.
    Milstein, Arnold S.
    Slatore, Christopher G.
    Escobar, Gabriel J.
    Liu, Vincent X.
    [J]. CRITICAL CARE MEDICINE, 2017, 45 (10) : 1607 - 1615
  • [9] Clinical Phenotyping of Out-of-Hospital Cardiac Arrest Patients With Shockable Rhythm - Machine Learning-Based Unsupervised Cluster Analysis -
    Okada, Yohei
    Komukai, Sho
    Kitamura, Tetsuhisa
    Kiguchi, Takeyuki
    Irisawa, Taro
    Yamada, Tomoki
    Yoshiya, Kazuhisa
    Park, Changhwi
    Nishimura, Tetsuro
    Ishibe, Takuya
    Yagi, Yoshiki
    Kishimoto, Masafumi
    Inoue, Toshiya
    Hayashi, Yasuyuki
    Sogabe, Taku
    Morooka, Takaya
    Sakamoto, Haruko
    Suzuki, Keitaro
    Nakamura, Fumiko
    Matsuyama, Tasuku
    Nishioka, Norihiro
    Kobayashi, Daisuke
    Matsui, Satoshi
    Hirayama, Atsushi
    Yoshimura, Satoshi
    Kimata, Shunsuke
    Shimazu, Takeshi
    Ohtsuru, Shigeru
    Iwami, Taku
    [J]. CIRCULATION JOURNAL, 2022, 86 (04) : 668 - +
  • [10] Association between shockable rhythm conversion and outcomes in patients with out-of-hospital cardiac arrest and initial non-shockable rhythm, according to the cause of cardiac arrest
    Han, Kap Su
    Lee, Sung Woo
    Lee, Eui Jung
    Kwak, Moon Hwan
    Kim, Su Jin
    [J]. RESUSCITATION, 2019, 142 : 144 - 152