Highly Confident Local Structure Based Consensus Graph Learning for Incomplete Multi-view Clustering

被引:7
|
作者
Wen, Jie [1 ]
Liu, Chengliang [1 ]
Xu, Gehui [1 ]
Wu, Zhihao [1 ]
Huang, Chao [2 ]
Fei, Lunke [3 ]
Xu, Yong [1 ,4 ]
机构
[1] Harbin Inst Technol, Shenzhen Key Lab Visual Object Detect & Recognit, Shenzhen, Peoples R China
[2] Sun Yat Sen Univ, Sch Cyber Sci & Technol, Shenzhen Campus, Shenzhen, Peoples R China
[3] Guangdong Univ Technol, Sch Comp Sci & Technol, Guangzhou, Peoples R China
[4] Pengcheng Lab, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52729.2023.01508
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph-based multi-view clustering has attracted extensive attention because of the powerful clustering-structure representation ability and noise robustness. Considering the reality of a large amount of incomplete data, in this paper, we propose a simple but effective method for incomplete multi-view clustering based on consensus graph learning, termed as HCLS CGL. Unlike existing methods that utilize graph constructed from raw data to aid in the learning of consistent representation, our method directly learns a consensus graph across views for clustering. Specifically, we design a novel confidence graph and embed it to form a confidence structure driven consensus graph learning model. Our confidence graph is based on an intuitive similar-nearest-neighbor hypothesis, which does not require any additional information and can help the model to obtain a high-quality consensus graph for better clustering. Numerous experiments are performed to confirm the effectiveness of our method.
引用
收藏
页码:15712 / 15721
页数:10
相关论文
共 50 条
  • [1] Consensus Graph Learning for Incomplete Multi-view Clustering
    Zhou, Wei
    Wang, Hao
    Yang, Yan
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT I, 2019, 11439 : 529 - 540
  • [2] Neighbor group structure preserving based consensus graph learning for incomplete multi-view clustering
    Wong, Wai Keung
    Liu, Chengliang
    Deng, Shijie
    Fei, Lunke
    Li, Lusi
    Lu, Yuwu
    Wen, Jie
    INFORMATION FUSION, 2023, 100
  • [3] Local structure learning for incomplete multi-view clustering
    Wang, Yongchun
    Yang, Youlong
    Ning, Tong
    APPLIED INTELLIGENCE, 2024, 54 (04) : 3308 - 3324
  • [4] Local structure learning for incomplete multi-view clustering
    Yongchun Wang
    Youlong Yang
    Tong Ning
    Applied Intelligence, 2024, 54 : 3308 - 3324
  • [5] Neighbor structure aware based cross-view consensus graph learning for incomplete multi-view clustering
    Yang, Haifeng
    Li, Xingyi
    Chen, Yijing
    Neurocomputing, 2025, 624
  • [6] Consensus Learning with Complete Graph Regularization for Incomplete Multi-view Clustering
    Zhang, Jie
    Fei, Lunke
    Teng, Shaohua
    Zhu, Qinghua
    Imad, Rida
    Wen, Jie
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1485 - 1492
  • [7] Consensus Graph Learning for Multi-View Clustering
    Li, Zhenglai
    Tang, Chang
    Liu, Xinwang
    Zheng, Xiao
    Zhang, Wei
    Zhu, En
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2461 - 2472
  • [8] Tensor-based consensus learning for incomplete multi-view clustering
    Mu, Jinshuai
    Song, Peng
    Yu, Yanwei
    Zheng, Wenming
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 234
  • [9] Refining Graph Structure for Incomplete Multi-View Clustering
    Li, Xiang-Long
    Chen, Man-Sheng
    Wang, Chang-Dong
    Lai, Jian-Huang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 2300 - 2313
  • [10] Contrastive Consensus Graph Learning for Multi-View Clustering
    Shiping Wang
    Xincan Lin
    Zihan Fang
    Shide Du
    Guobao Xiao
    IEEE/CAA Journal of Automatica Sinica, 2022, 9 (11) : 2027 - 2030