Previously unknown Co-2(TeO3)(OH)(2) and Co-15(TeO3)(14)(OH)(2) were obtained under mild hydrothermal reaction conditions (210 degrees C, autogenous pressure) from alkaline solutions. Their crystal structures were determined from single-crystal X-ray diffraction data. Co-2(TeO3)(OH)(2) (Z = 2, P1 over bar , a = 5.8898(5), b = 5.9508(5), c = 6.8168(5) & ANGS;, alpha = 101.539(2), beta = 100.036(2), gamma = 104.347(2)& DEG;, 2120 independent reflections, 79 parameters, R[F-2 > 2 sigma(F-2)] = 0.017) crystallizes in a unique structure comprised of undulating (2)(& PROP;)[Co-2(OH)(6/3)O3/3O2/2O1/1](4-) layers. Adjacent layers are linked by Te-IV atoms along the [001] stacking direction. Co-2(TeO3)(OH)(2) is stable up to 450 & DEG;C and decomposes under the release of water into Co6Te5O16 and CoO. Magnetic measurements of Co-2(TeO3)(OH)(2) showed antiferromagnetic ordering at & AP; 70 K. The crystal structure of Co-15(TeO3)(14)(OH)(2) (Z = 3, R3 over bar , a = 11.6453(2), c = 27.3540(5) & ANGS;, 3476 independent reflections, 112 parameters, R[F-2 > 2 sigma(F-2)] = 0.026) is isotypic with Co-15(TeO3)(14)F-2. A quantitative structural comparison revealed that the main structural difference between the two phases is connected with the replacement of F by OH, whereas the remaining part of the three-periodic network defined by [CoO6], [CoO5(OH)], [CoO5] and [TeO3] polyhedra is nearly unaffected. Consequently, the magnetic properties of the two phases are similar, namely being antiferromagnetic at low temperatures.