One-sided nilpotent semicommutative properties of rings

被引:0
|
作者
He, Ping [1 ]
Zhao, Liang [1 ]
机构
[1] Anhui Univ Technol, Sch Math & Phys, Maanshan 243032, Peoples R China
基金
美国国家科学基金会;
关键词
Semicommutative ring; nil-semicommutative ring; semiprime ring; left nilpotent semicommutative ring; ARMENDARIZ RINGS; EXTENSIONS;
D O I
10.1142/S1793557123502443
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the semicommutative properties of rings with one-sided nilpotent structures. The concepts of left and right nilpotent semicommutative rings are defined and studied, which are a generalization of semicommutative rings. We show that the class of one-sided nilpotent semicommutative rings is strictly placed between the class of semicommutative rings and that of nil-semicommutative rings. As applications, we give some characterizations of semiprime rings from the point of view of left nilpotent semicommutative rings.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] On one-sided Lie nilpotent ideals of associative rings
    Luchko, Victoriya S.
    Petravchuk, Anatoliy P.
    ALGEBRA & DISCRETE MATHEMATICS, 2007, (04): : 102 - 107
  • [2] One-sided Gorenstein rings
    Christensen, Lars Winther
    Estrada, Sergio
    Liang, Li
    Thompson, Peder
    Wang, Junpeng
    FORUM MATHEMATICUM, 2024, 36 (05) : 1411 - 1433
  • [3] ONE-SIDED CLEAN RINGS
    Calugaranu, Grigore
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2010, 55 (03): : 83 - 92
  • [4] ONE-SIDED INVERSES IN RINGS
    PETERSON, RD
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1975, 27 (01): : 218 - 224
  • [5] ONE-SIDED REGULARITY IN RINGS
    CHOUDHURI, I
    DEVI, MI
    REGE, MB
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1991, 14 (06): : 261 - 262
  • [6] ONE-SIDED LOCALIZATION IN RINGS
    COHN, PM
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1993, 88 (1-3) : 37 - 42
  • [7] Prime rings with finiteness properties on one-sided ideals
    Lee, TK
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2002, 45 : 507 - 511
  • [8] Nilpotent Structure of Generalized Semicommutative Rings
    Ping HE
    Liang ZHAO
    Journal of Mathematical Research with Applications, 2022, 42 (02) : 133 - 144
  • [9] On Nilpotent-invariant One-sided Ideals
    Quynh, Truong Cong
    Van, Truong Thi Thuy
    ACTA MATHEMATICA VIETNAMICA, 2024, 49 (01) : 115 - 128
  • [10] QUOTIENT RINGS AND ONE-SIDED PRIMES
    DAUNS, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1975, 278 (NOV28): : 205 - 224