Diversity entropy-based Bayesian deep learning method for uncertainty quantification of remaining useful life prediction in rolling bearings

被引:2
|
作者
Bai, Rui [1 ]
Li, Yongbo [1 ]
Noman, Khandaker [1 ]
Wang, Shun [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Diversity entropy-based bayesian deep learning; remaining useful life prediction; uncertainty quantification; start degradation time; rolling bearings; FAULT-DIAGNOSIS; PROGNOSTICS;
D O I
10.1177/10775463221129930
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Remaining useful life (RUL) prediction of rolling bearings plays a critical role in reducing unplanned downtime and improving machine productivity. The existing prediction methods primarily provide point estimates of RUL without quantifying uncertainty. However, uncertainty quantification of RUL is crucial to conduct reliable risk analysis and make maintenance decision, which can significantly decrease the maintenance costs. To solve the uncertainty quantification problem and improve prediction accuracy at the same time, a novel diversity entropy-based Bayesian deep learning (DE-BDL) method is proposed. First, start degradation time (SDT) of bearings is adaptively determined using diversity entropy, which can extract early degradation information. Then, multi-scale diversity entropy (MDE) is developed to extract dynamic characteristics over multiple scales. Third, the obtained features using MDE are fed into the BDL model for degradation tracking and prediction. By doing this, the proposed DE-BDL method has merits in subsequent decision making, which can not only provide point estimation but also offer uncertainty quantification with epistemic uncertainty and aleatoric uncertainty. The superiority of the proposed method is validated using run-to-failure data. The experimental results and comparison with state-of-art prediction methods have demonstrated that the proposed DE-BDL method is promising for RUL of rolling bearings.
引用
收藏
页码:5053 / 5066
页数:14
相关论文
共 50 条
  • [1] Remaining useful life prediction of rolling bearings based on Bayesian neural network and uncertainty quantification
    Jiang, Guang-Jun
    Yang, Jin-Sen
    Cheng, Tian-Cai
    Sun, Hong-Hua
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2023, 39 (05) : 1756 - 1774
  • [2] A Remaining Useful Life Prediction Method of Rolling Bearings Based on Deep Reinforcement Learning
    Zheng, Guokang
    Li, Yasong
    Zhou, Zheng
    Yan, Ruqiang
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (13): : 22938 - 22949
  • [3] Method for remaining useful life prediction of rolling bearings based on deep reinforcement learning
    Wang, Yipeng
    Li, Yonghua
    Lu, Hang
    Wang, Denglong
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (09):
  • [4] Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification
    Yang, Jinsong
    Peng, Yizhen
    Xie, Jingsong
    Wang, Pengxi
    SENSORS, 2022, 22 (12)
  • [5] Uncertainty Measurement of the Prediction of the Remaining Useful Life of Rolling Bearings
    Sun, Hongchun
    Wu, Chenchen
    Lei, Zunyang
    JOURNAL OF NONDESTRUCTIVE EVALUATION, DIAGNOSTICS AND PROGNOSTICS OF ENGINEERING SYSTEMS, 2022, 5 (03):
  • [6] Remaining Useful Life Prediction for Rolling Bearings With a Novel Entropy-Based Health Indicator and Improved Particle Filter Algorithm
    Zhang, Tianyu
    Wang, Qingfeng
    Shu, Yue
    Xiao, Wang
    Ma, Wensheng
    IEEE ACCESS, 2023, 11 : 3062 - 3079
  • [7] Prediction Method of Remaining Useful Life of Rolling Bearings Based on Improved GcForest
    Wang Y.
    Wang S.
    Kang S.
    Wang Q.
    Mikulovich V.I.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2020, 40 (15): : 5032 - 5042
  • [8] A Hybrid Bayesian Deep Learning Model for Remaining Useful Life Prognostics and Uncertainty Quantification
    Huang, Dengshan
    Bai, Rui
    Zhao, Shuai
    Wen, Pengfei
    He, Jiawei
    Wang, Shengyue
    Chen, Shaowei
    2021 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2021,
  • [9] On a Prediction Method for Remaining Useful Life of Rolling Bearings via VMD-Based Dispersion Entropy and GAN
    Yi, Cancan
    Li, Shuhang
    Huang, Tao
    Xiao, Han
    Jiang, Yefeng
    IEEE SENSORS JOURNAL, 2023, 23 (22) : 27744 - 27756
  • [10] Bayesian Neural Network Based Method of Remaining Useful Life Prediction and Uncertainty Quantification for Aircraft Engine
    Huang, Dengshan
    Bai, Rui
    Zhao, Shuai
    Wen, Pengfei
    Wang, Shengyue
    Chen, Shaowei
    2020 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2020,