Urea Synthesis from N2 and CO2 over Dual-Atom Catalysts: A High-Throughput Computational Insight

被引:0
|
作者
Liu, Chaozhen [1 ]
Gong, Feng [1 ]
Zhou, Qiang [2 ]
Xie, Yunlong [3 ]
机构
[1] Southeast Univ, Sch Energy & Environm, Key Lab Energy Thermal Convers & Control, Minist Educ, Nanjing 211189, Jiangsu, Peoples R China
[2] Univ Tokyo, Sch Engn, Tokyo 1138656, Japan
[3] Hubei Normal Univ, Inst Adv Mat, Huangshi 435002, Peoples R China
基金
中国国家自然科学基金;
关键词
NITROGEN REDUCTION; METAL; AMMONIA; C2N; ELECTROCATALYSTS; ELECTROREDUCTION; SITE;
D O I
10.1021/acs.energyfuels.3c04866
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The simultaneous electrocatalytic conversion of N-2 and CO2 into value-added urea is a promising approach to utilizing CO2 as a feedstock for the sustainable production of chemicals. Designing cost-effective electrocatalysts for simultaneous activation of N-2 and CO2 on distinct active sites is challenging due to the inertness of N-2 and the competing reduction of CO2 to other products. To address this, we systematically designed various dual-atom anchored on two-dimensional C2N and found that the presence of dual metal atoms on the C2N generates excess surface-charge density, favoring the activation of CO2 and N-2. The screening results demonstrate that ReV@C2N is the optimal candidate for driving the urea synthesis, as it facilitates stable binding of both N-2 and CO2. This could be attributed to the presence of dual metal atoms on C2N, which generate excess surface-charge density that favors the activation of CO2 and N-2. In addition, we have thoroughly investigated the C-N coupling process. This observation can be explained by the spontaneous coupling of the obtained CO moiety into the activated N-N bond to form NCON, which is driven by the thermodynamic driving force and orbital overlap of the adsorbed N-2 and CO.
引用
收藏
页码:8951 / 8959
页数:9
相关论文
共 50 条
  • [1] High-Throughput Computational Screening of Bioinspired Dual-Atom Alloys for CO2 Activation
    Behrendt, Drew
    Banerjee, Sayan
    Clark, Cole
    Rappe, Andrew M.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (08) : 4730 - 4735
  • [2] Regulating the Critical Intermediates of Dual-Atom Catalysts for CO2 Electroreduction
    Zhang, Mengyang
    Zhou, Dingyang
    Mu, Xueqin
    Wang, Dingsheng
    Liu, Suli
    Dai, Zhihui
    SMALL, 2024,
  • [3] Single-Atom Catalysts and Dual-Atom Catalysts for CO2 Electroreduction: Competition or Cooperation?
    Shao, Yueyue
    Yuan, Qunhui
    Zhou, Jia
    SMALL, 2023, 19 (40)
  • [4] Electrocatalysts for Urea Synthesis from CO2 and Nitrogenous Species: From CO2 and N2/NOx Reduction to urea synthesis
    Li, Chun
    Zhu, Qiuji
    Song, Chaojie
    Zeng, Yimin
    Zheng, Ying
    ChemSusChem, 2024, 17 (24)
  • [5] Rational Design of Heterogeneous Dual-Atom Catalysts for CO2 Electroreduction Reactions
    Jafarzadeh, Mohammad
    Daasbjerg, Kim
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (13) : 6851 - 6882
  • [6] Efficient urea formation from N2O + CO on dual-atom catalysts TM2/g-CN
    Ren, Zebin
    Wang, Xinxin
    Wang, Shuhua
    Zhang, Haona
    Huang, Baibiao
    Dai, Ying
    Wei, Wei
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (21) : 11507 - 11516
  • [7] Electrocatalytic coupling of CO2 and N2 for urea synthesis
    Wang J.
    Yao Z.
    Hao L.
    Sun Z.
    Current Opinion in Green and Sustainable Chemistry, 2022, 37
  • [8] Leveraging Atomic-Scale Synergy for Selective CO2 Electrocatalysis to CO over CuNi Dual-Atom Catalysts
    Chen, Bin
    Shi, Dehuan
    Deng, Renxia
    Xu, Xin
    Liu, Wenxia
    Wei, Yang
    Liu, Zheyuan
    Zhong, Shenghong
    Huang, Jianfeng
    Yu, Yan
    ACS Catalysis, 2024, 14 (21) : 16224 - 16233
  • [9] High-throughput screening of highly efficient Cu-based dual-atom catalysts to promote nitrate electroreduction for ammonia synthesis: A computational study
    Zhao, Tiantian
    Yang, Meiqi
    Sun, Yuting
    Wang, Zhongxu
    Cai, Qinghai
    Zhao, Jingxiang
    MOLECULAR CATALYSIS, 2023, 541
  • [10] High-Throughput Screening of Synergistic Transition Metal Dual-Atom Catalysts for Efficient Nitrogen Fixation
    Lv, Xingshuai
    Wei, Wei
    Huang, Baibiao
    Dai, Ying
    Frauenheim, Thomas
    NANO LETTERS, 2021, 21 (04) : 1871 - 1878