共 50 条
Urea Synthesis from N2 and CO2 over Dual-Atom Catalysts: A High-Throughput Computational Insight
被引:0
|作者:
Liu, Chaozhen
[1
]
Gong, Feng
[1
]
Zhou, Qiang
[2
]
Xie, Yunlong
[3
]
机构:
[1] Southeast Univ, Sch Energy & Environm, Key Lab Energy Thermal Convers & Control, Minist Educ, Nanjing 211189, Jiangsu, Peoples R China
[2] Univ Tokyo, Sch Engn, Tokyo 1138656, Japan
[3] Hubei Normal Univ, Inst Adv Mat, Huangshi 435002, Peoples R China
基金:
中国国家自然科学基金;
关键词:
NITROGEN REDUCTION;
METAL;
AMMONIA;
C2N;
ELECTROCATALYSTS;
ELECTROREDUCTION;
SITE;
D O I:
10.1021/acs.energyfuels.3c04866
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
The simultaneous electrocatalytic conversion of N-2 and CO2 into value-added urea is a promising approach to utilizing CO2 as a feedstock for the sustainable production of chemicals. Designing cost-effective electrocatalysts for simultaneous activation of N-2 and CO2 on distinct active sites is challenging due to the inertness of N-2 and the competing reduction of CO2 to other products. To address this, we systematically designed various dual-atom anchored on two-dimensional C2N and found that the presence of dual metal atoms on the C2N generates excess surface-charge density, favoring the activation of CO2 and N-2. The screening results demonstrate that ReV@C2N is the optimal candidate for driving the urea synthesis, as it facilitates stable binding of both N-2 and CO2. This could be attributed to the presence of dual metal atoms on C2N, which generate excess surface-charge density that favors the activation of CO2 and N-2. In addition, we have thoroughly investigated the C-N coupling process. This observation can be explained by the spontaneous coupling of the obtained CO moiety into the activated N-N bond to form NCON, which is driven by the thermodynamic driving force and orbital overlap of the adsorbed N-2 and CO.
引用
收藏
页码:8951 / 8959
页数:9
相关论文