Glutamine Ameliorates Liver Steatosis via Regulation of Glycolipid Metabolism and Gut Microbiota in High-Fat Diet-Induced Obese Mice

被引:3
|
作者
Zhou, Xinbo [1 ]
Zhang, Junjie [1 ]
Sun, Yutong [1 ]
Shen, Jian [1 ]
Sun, Bo [1 ]
Ma, Qingquan [1 ]
机构
[1] Northeast Agr Univ, Coll Anim Sci & Technol, Harbin 150030, Peoples R China
基金
中国国家自然科学基金;
关键词
obesity; glutamine; liver steatosis; lipid metabolism; glucose metabolism; gut microbiota; INSULIN-RESISTANCE; OXIDATIVE STRESS; ADIPOSE-TISSUE; SUPPLEMENTATION; INFLAMMATION; MECHANISMS; EXPRESSION; DISEASE; ACIDS; RATS;
D O I
10.1021/acs.jafc.3c05566
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Obesity and its associated conditions, such as nonalcoholic fatty liver disease (NAFLD), are risk factors for health. The aim of this study was to explore the effects of glutamine (Gln) on liver steatosis induced by a high-fat diet (HFD) and HEPG2 cells induced by oleic acid. Gln demonstrated a positive influence on hepatic homeostasis by suppressing acetyl CoA carboxylase (ACC) and fatty acid synthase (FAS) and promoting sirtuin 1 (SIRT1) expression while improving glucose metabolism by regulating serine/threonine protein kinase (AKT)/factor forkhead box O1 (FOXO1) signals in vivo and in vitro. Obese Gln-fed mice had higher colonic short-chain fatty acid (SCFA) contents and lower inflammation factor protein levels in the liver, HEPG2 cells, and jejunum. Gln-treated obese mice had an effective decrease in Firmicutes abundance. These findings indicate that Gln serves as a nutritional tool in managing obesity and related disorders.
引用
收藏
页码:15656 / 15667
页数:12
相关论文
共 50 条
  • [1] Modulation of fat metabolism and gut microbiota by resveratrol on high-fat diet-induced obese mice
    Campbell, C. Linda
    Yu, Renqiang
    Li, Fengzhi
    Zhou, Qin
    Chen, Daozhen
    Qi, Ce
    Yin, Yongxiang
    Sun, Jin
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2019, 12 : 97 - 107
  • [2] Allicin Improves Metabolism in High-Fat Diet-Induced Obese Mice by Modulating the Gut Microbiota
    Shi, Xin'e
    Zhou, Xiaomin
    Chu, Xinyi
    Wang, Jie
    Xie, Baocai
    Ge, Jing
    Guo, Yuan
    Li, Xiao
    Yang, Gongshe
    NUTRIENTS, 2019, 11 (12)
  • [3] Gochujang Ameliorates Hepatic Inflammation by Improving Dysbiosis of Gut Microbiota in High-Fat Diet-Induced Obese Mice
    Lee, Eun-Ji
    Edward, Olivet Chiamaka
    Seo, Eun-Bi
    Mun, Eun-Gyung
    Jeong, Su-Ji
    Ha, Gwangsu
    Han, Anna
    Cha, Youn-Soo
    MICROORGANISMS, 2023, 11 (04)
  • [4] Xiaoyao San ameliorates high-fat diet-induced anxiety and depression via regulating gut microbiota in mice
    Yang, Youjun
    Zhong, Zhanqiong
    Wang, Baojia
    Wang, Yili
    BIOMEDICINE & PHARMACOTHERAPY, 2022, 156
  • [5] Capsaicin Ameliorates High-Fat Diet-Induced Atherosclerosis in ApoE-/- Mice via Remodeling Gut Microbiota
    Dai, Zijian
    Li, Siqi
    Meng, Yantong
    Zhao, Qingyu
    Zhang, Yiyun
    Suonan, Zhuoma
    Sun, Yuge
    Shen, Qun
    Liao, Xiaojun
    Xue, Yong
    NUTRIENTS, 2022, 14 (20)
  • [6] Codium fragileAmeliorates High-Fat Diet-Induced Metabolism by Modulating the Gut Microbiota in Mice
    Kim, Jungman
    Choi, Jae Ho
    Oh, Taehwan
    Ahn, Byungjae
    Unno, Tatsuya
    NUTRIENTS, 2020, 12 (06) : 1 - 15
  • [7] Nuciferine ameliorates high-fat diet-induced disorders of glucose and lipid metabolism in obese mice based on the gut-liver axis
    Zhu, Xiangyang
    Hao, Rili
    Lv, Xiaqing
    Zhou, Xing
    Li, Dapeng
    Zhang, Chen
    FOOD FRONTIERS, 2024, 5 (01): : 188 - 201
  • [8] Black Current Anthocyanins Improve Lipid Metabolism and Modulate Gut Microbiota in High-Fat Diet-Induced Obese Mice
    Song, Haizhao
    Shen, Xinchun
    Wang, Fang
    Li, Yu
    Zheng, Xiaodong
    MOLECULAR NUTRITION & FOOD RESEARCH, 2021, 65 (06)
  • [9] Metformin modulates the gut microbiome in a mice model of high-fat diet-induced glycolipid metabolism disorder
    Wu, Haoran
    Wang, Xinmiao
    Fang, Xinyi
    Lian, Fengmei
    Li, Min
    Liao, Jiangquan
    Dai, Dan
    Tian, Jiaxing
    BMJ OPEN DIABETES RESEARCH & CARE, 2022, 10 (06)
  • [10] Quercetin ameliorates hepatic fat accumulation in high-fat diet-induced obese mice via PPARs
    Zhao, Jingqi
    Sun, Yantong
    Yuan, Cuiping
    Li, Tiezhu
    Liang, Yuan
    Zou, Haoyang
    Zhang, Jie
    Ren, Li
    FOOD & FUNCTION, 2023, 14 (03) : 1674 - 1684