Finite-temperature ferromagnetic transition in coherently coupled Bose gases

被引:1
|
作者
Roy, Arko [1 ,2 ,3 ]
Ota, Miki [1 ,2 ]
Dalfovo, Franco [1 ,2 ]
Recati, Alessio [1 ,2 ,4 ]
机构
[1] Univ Trento, Pitaevskii BEC Ctr, CNR, INO, Via Sommar 14, I-38123 Trento, Italy
[2] Univ Trento, Dipartimento Fis, Via Sommar 14, I-38123 Trento, Italy
[3] Indian Inst Technol Mandi, Sch Phys Sci, Mandi 175075, HP, India
[4] INFN, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Italy
关键词
GROSS-PITAEVSKII EQUATION; DYNAMICS; MIXTURES; CONDENSATION; SEPARATION;
D O I
10.1103/PhysRevA.107.043301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A paramagnetic-ferromagnetic quantum phase transition is known to occur at zero temperature in a twodimensional coherently coupled Bose mixture of dilute ultracold atomic gases provided the interspecies interaction strength is large enough. Here we study the fate of such a transition at finite temperature by performing numerical simulations with the stochastic (projected) Gross-Pitaevskii formalism, which includes both thermal and beyond mean-field effects. By extracting the average magnetization, the magnetic fluctuations and characteristic relaxation frequency (or critical slowing down), we identify a finite-temperature critical line for the transition. We find that the critical point shifts linearly with temperature and, in addition, the three quantities used to probe the transition exhibit a temperature power-law scaling. The scaling of the critical slowing down is found to be consistent with thermal critical exponents and is very well approximated by the square of the spin excitation gap at zero temperature.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Coherently coupled Bose gases
    Recati, A.
    QUANTUM MATTER AT ULTRALOW TEMPERATURES, 2016, 191 : 463 - 483
  • [2] Finite-temperature excitations of Bose gases in anisotropic traps
    Reidl, J
    Csordás, A
    Graham, R
    Szépfalusy, P
    PHYSICAL REVIEW A, 1999, 59 (05): : 3816 - 3822
  • [3] Observable vortex properties in finite-temperature Bose gases
    Allen, A. J.
    Zaremba, E.
    Barenghi, C. F.
    Proukakis, N. P.
    PHYSICAL REVIEW A, 2013, 87 (01):
  • [4] Magnetic phase transition in coherently coupled Bose gases in optical lattices
    Barbiero, L.
    Abad, M.
    Recati, A.
    PHYSICAL REVIEW A, 2016, 93 (03)
  • [5] Sideband Rabi spectroscopy of finite-temperature trapped Bose gases
    Allard, Baptiste
    Fadel, Matteo
    Schmied, Roman
    Treutlein, Philipp
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [6] Comparison between microscopic methods for finite-temperature Bose gases
    Cockburn, S. P.
    Negretti, A.
    Proukakis, N. P.
    Henkel, C.
    PHYSICAL REVIEW A, 2011, 83 (04)
  • [7] Finite-temperature correlations in the one-dimensional trapped and untrapped Bose gases
    Bogoliubov, NM
    Malyshev, C
    Bullough, RK
    Timonen, J
    PHYSICAL REVIEW A, 2004, 69 (02): : 15
  • [8] Ab initio methods for finite-temperature two-dimensional Bose gases
    Cockburn, S. P.
    Proukakis, N. P.
    PHYSICAL REVIEW A, 2012, 86 (03):
  • [9] Finite-temperature simulations of the scissors mode in Bose-Einstein condensed gases
    Jackson, B
    Zaremba, E
    PHYSICAL REVIEW LETTERS, 2001, 87 (10)
  • [10] Finite-temperature behavior of the Bose polaron
    Levinsen, Jesper
    Parish, Meera M.
    Christensen, Rasmus S.
    Arlt, Jan J.
    Bruun, Georg M.
    PHYSICAL REVIEW A, 2017, 96 (06)