Multi-objective optimization of raw silk parameters using a combined support vector regression-genetic algorithm-desirability function approach

被引:1
|
作者
Das, Subhasis [1 ]
Ghosh, Anindya [1 ]
机构
[1] Govt Coll Engn & Text Technol, Berhampur, India
关键词
Cocoon; desirability; genetic algorithm; optimization; raw silk; support vector regression; YARN-STRENGTH PREDICTION; ROTOR-SPUN YARNS; FIBER PROPERTIES; NEURAL-NETWORKS; RING;
D O I
10.1080/00405000.2023.2201066
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
This work deals with the multi-objective optimization of raw silk qualities using the desirability function approach. Raw silk qualities are primarily governed by silk cocoon characteristics. In this paper, the complexity of simultaneous optimization of conflicting raw silk properties are resolved using a hybrid multi-objective optimization model where predictive power of support vector regression and optimization capability of genetic algorithm are employed with desirability function. The individual desirability of raw silk qualities is assessed from the four silk cocoon properties such as defective cocoon percentage, shell ratio, cocoon weight and cocoon volume. Raw silk parameters such as filament length, tenacity, renditta and reelability are combined together to express overall desirability. The proposed multi-objective optimization model can determine the optimum cocoon parameters essential to produce good-quality raw silk.
引用
收藏
页码:433 / 441
页数:9
相关论文
共 50 条
  • [1] Multi-objective optimization for support vector regression parameters
    Wang, Xiaogang
    Tong, Zhen
    Wang, Fuli
    [J]. Information, Management and Algorithms, Vol II, 2007, : 194 - 196
  • [2] Approach to multi-objective optimization for support vector regression model's parameters
    Wang Xiao-gang
    Tong Zhen
    Wang Fu-li
    Zhang Qing-zhi
    [J]. Proceedings of the 2007 Chinese Control and Decision Conference, 2007, : 85 - +
  • [3] Using Multi-objective Algorithms for Optimizing Support Vector Regression Parameters
    de Almeida Neto, Manoel Alves
    Fagundes, Roberta de Andrade de A.
    Bastos-Filho, Carmelo J. A.
    [J]. 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [4] A Multi-Objective Genetic Algorithm for Pruning Support Vector Machines
    Hady, Mohamed Farouk Abdel
    Herbawi, Wesam
    Weber, Michael
    Schwenker, Friedhelm
    [J]. 2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011), 2011, : 269 - 275
  • [5] New approach for robust multi-objective optimization of turning parameters using probabilistic genetic algorithm
    M. A. Sahali
    I. Belaidi
    R. Serra
    [J]. The International Journal of Advanced Manufacturing Technology, 2016, 83 : 1265 - 1279
  • [6] New approach for robust multi-objective optimization of turning parameters using probabilistic genetic algorithm
    Sahali, M. A.
    Belaidi, I.
    Serra, R.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 83 (5-8): : 1265 - 1279
  • [7] Combining support vector regression and cellular genetic algorithm for multi-objective optimization of coal-fired utility boilers
    Wu, Feng
    Zhou, Hao
    Ren, Tao
    Zheng, Ligang
    Cen, Kefa
    [J]. FUEL, 2009, 88 (10) : 1864 - 1870
  • [8] Using support vector machines in multi-objective optimization
    Yun, YB
    Nakayama, H
    Arakawa, M
    [J]. 2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 223 - 228
  • [9] Multi-objective optimization based on meta-modeling by using support vector regression
    Yun, Yeboon
    Yoon, Min
    Nakayama, Hirotaka
    [J]. OPTIMIZATION AND ENGINEERING, 2009, 10 (02) : 167 - 181
  • [10] Multi-objective optimization based on meta-modeling by using support vector regression
    Yeboon Yun
    Min Yoon
    Hirotaka Nakayama
    [J]. Optimization and Engineering, 2009, 10 : 167 - 181