High-Performance and Ecofriendly Organic Thermoelectrics Enabled by N-Type Polythiophene Derivatives with Doping-Induced Molecular Order

被引:19
|
作者
Deng, Sihui [1 ,2 ]
Kuang, Yazhuo [1 ,2 ]
Liu, Liyao [4 ]
Liu, Xinyu [1 ,2 ]
Liu, Jian [1 ,2 ]
Li, Jingyu [3 ]
Meng, Bin [1 ]
Di, Chong-an [4 ]
Hu, Junli [3 ]
Liu, Jun [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
[2] Univ Sci & Technol China, Sch Appl Chem & Engn, Hefei 230026, Peoples R China
[3] Northeast Normal Univ, Key Lab UV Emitting Mat & Technol, Minist Educ, Changchun 130024, Peoples R China
[4] Chinese Acad Sci, Beijing Natl Lab Mol Sci, CAS Key Lab Organ Solids, Inst Chem, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
conducting materials; n-doping; n-type polythiophene derivatives; organic thermoelectrics; CONJUGATED POLYMERS; CHARGE-TRANSPORT; SIDE-CHAINS; SEMICONDUCTORS; NANOFIBERS; MOBILITY; DESIGN; STATE; FILM;
D O I
10.1002/adma.202309679
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ability of n-type polymer thermoelectric materials to tolerate high doping loading limits further development of n-type polymer conductivity. Herein, two alcohol-soluble n-type polythiophene derivatives that are n-PT3 and n-PT4 are reported. Due to the ability of two polymers to tolerate doping loading more significantly than 100 mol%, both achieve electrical conductivity >100 S cm(-1). Moreover, the conductivity of both polythiophenes remains almost constant at high doping concentrations with excellent doping tunability, which may be related to their ability to overcome charging-induced backbone torsion and morphology change caused by saturated doping. The characterizations reveal that n-PT4 has a high doping level and carrier concentration (>3.10 x 10(20) cm(-3)), and the carrier concentration continues to increase as the doping concentration increases. In addition, doping leads to improved crystal structure of n-PT4, and the crystallinity does not decrease significantly with increasing doping concentration; even the carrier mobility increases with it. The synergistic effect of these two leads to both n-PT3 and n-PT4 achieving a breakthrough of 100 in conductivity and power factor. The DMlmC-doped n-PT4 achieves a power factor of over 150 mu W m(-1) K-2. These values are among the highest for n-type organic thermoelectric materials.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] High-performance n-type organic thermoelectrics enabled by modulating cyano-functionalized polythiophene backbones
    Wang, Junwei
    Ma, Suxiang
    Jeong, Sang Young
    Yang, Wanli
    Li, Jianfeng
    Han, Young Woo
    Feng, Kui
    Guo, Xugang
    FARADAY DISCUSSIONS, 2024, 250 (00) : 335 - 347
  • [2] High-Performance n-Type Organic Thermoelectrics Enabled by Synergistically Achieving High Electron Mobility and Doping Efficiency
    Feng, Kui
    Wang, Junwei
    Jeong, Sang Young
    Yang, Wanli
    Li, Jianfeng
    Woo, Han Young
    Guo, Xugang
    ADVANCED SCIENCE, 2023, 10 (29)
  • [3] Molecular engineering accelerated polarity switching enabling high-performance n-type organic thermoelectrics
    Zhong, Fei
    Yin, Xiaojun
    Wu, Jiatao
    Gao, Chunmei
    Zhong, Cheng
    Wang, Lei
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (35) : 18030 - 18037
  • [4] An n-Type Conjugated Polymer with Low Crystallinity for High-Performance Organic Thermoelectrics
    Gao, Yuexin
    Ke, Yunzhe
    Wang, Tianzuo
    Shi, Yibo
    Wang, Cheng
    Ding, Shuaishuai
    Wang, Yupu
    Deng, Yunfeng
    Hu, Wenping
    Geng, Yanhou
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (20)
  • [5] Molecular Insights into n-Type Organic Thermoelectrics
    Shao, Shuyan
    Liu, Jian
    CCS CHEMISTRY, 2021, 3 (10): : 2702 - 2716
  • [6] Defect Engineering for High-Performance n-Type PbSe Thermoelectrics
    Zhou, Chongjian
    Lee, Yong Kyu
    Cha, Joonil
    Yoo, Byeongjun
    Cho, Sung-Pyo
    Hyeon, Taeghwan
    Chung, In
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (29) : 9282 - 9290
  • [7] High-Performance n-Type Organic Thermoelectrics with Exceptional Conductivity by Polymer-Dopant Matching
    Gamez-Valenzuela, Sergio
    Li, Jianfeng
    Ma, Suxiang
    Jeong, Sang Young
    Woo, Han Young
    Feng, Kui
    Guo, Xugang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (40)
  • [8] A High-Mobility n-Type Noncovalently-Fused-Ring Polymer for High-Performance Organic Thermoelectrics
    Shen, Tao
    Liu, Di
    Zhang, Jianqi
    Wei, Zhixiang
    Wang, Yang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (35)
  • [9] Extraordinary n-Type Mg3SbBi Thermoelectrics Enabled by Yttrium Doping
    Shi, Xuemin
    Zhao, Tingting
    Zhang, Xinyue
    Sun, Cheng
    Chen, Zhiwei
    Lin, Siqi
    Li, Wen
    Gu, Hui
    Pei, Yanzhong
    ADVANCED MATERIALS, 2019, 31 (36)
  • [10] Robust, high-performance n-type organic semiconductors
    Okamoto, Toshihiro
    Kumagai, Shohei
    Fukuzaki, Eiji
    Ishii, Hiroyuki
    Watanabe, Go
    Niitsu, Naoyuki
    Annaka, Tatsuro
    Yamagishi, Masakazu
    Tani, Yukio
    Sugiura, Hiroki
    Watanabe, Tetsuya
    Watanabe, Shun
    Takeya, Jun
    SCIENCE ADVANCES, 2020, 6 (18)