DssPyLib: An open-source python']python FEM software to solve Poisson equation in 2-D using distributed source scheme

被引:1
|
作者
Goona, Nithin Kumar [1 ]
Naik, Shraddha M. [2 ]
Parne, Saidi Reddy [1 ]
Paul, Anand [2 ]
机构
[1] Natl Inst Technol Goa, Dept Appl Sci, Ponda 403401, Goa, India
[2] Kyungpook Natl Univ, Sch Comp Sci & Engn, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
Finite element method; Integral method; Poisson equation; !text type='Python']Python[!/text; Numerical solution; Dirichlet boundary condition; FINITE-DIFFERENCE METHOD; ACCURACY;
D O I
10.1016/j.softx.2023.101308
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper introduces DssPyLib, an open-source Python software to compute 2-D electrostatic and magnetostatic fields using the finite element method. With a minimalist interface and non-overlapping simple shapes, the software supports integral and finite element numerical solutions for open boundary problems. The software also provides numerical solutions using Distributed Source Scheme, a technique to reduce error around the sources of the field. An overview of the structure and features of DssPyLib is presented along with experimental validation. The software also features extraction of valuable information such as vector field at any point and force on any field source. The software explores various sources of errors and the methods to reduce errors in numerical simulations. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] DiffraPy: An open-source Python']Python software for seismic diffraction imaging
    Zakarewicz, Guilherme
    Maciel, Susanne
    Biloti, Ricardo
    COMPUTERS & GEOSCIENCES, 2024, 186
  • [2] PyOMA2: An Open-Source Python']Python Software for Operational Modal Analysis
    Pasca, Dag Pasquale
    Margoni, Diego Federico
    Rosso, Marco Martino
    Aloisio, Angelo
    PROCEEDINGS OF THE 10TH INTERNATIONAL OPERATIONAL MODAL ANALYSIS CONFERENCE, VOL 1, IOMAC 2024, 2024, 514 : 423 - 434
  • [3] Open-source coupled aerostructural optimization using Python']Python
    Jasa, John P.
    Hwang, John T.
    Martins, Joaquim R. R. A.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 57 (04) : 1815 - 1827
  • [4] SLEEP: A PYTHON']PYTHON OPEN-SOURCE SOFTWARE FOR VISUALIZING AND SCORING SLEEP DATA
    Vallat, R.
    Combrisson, E.
    Eichenlaub, J. -B.
    O'Reilly, C.
    Lajnef, T.
    Guillot, A.
    Ruby, P.
    Jerbi, K.
    SLEEP MEDICINE, 2017, 40 : E333 - E333
  • [5] Simple Physics With Python']Python: A Workbook on Introductory Physics With Open-Source Software
    Mandanici, Andrea
    Mandaglio, Giuseppe
    Nibali, Valeria Conti
    Fiumara, Giacomo
    Pirrotta, Giovanni
    COMPUTING IN SCIENCE & ENGINEERING, 2022, 24 (02) : 74 - 78
  • [6] Open-source Python']Python software for analysis of 3D kinematics from quadrupedal animals
    Maghsoudi, Omid Haji
    Vahedipour, Annie
    Hallowell, Thomas
    Spence, Andrew
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 51 : 364 - 373
  • [7] Sleep: An Open-Source Python']Python Software for Visualization, Analysis, and Staging of Sleep Data
    Combrisson, Etienne
    Vallat, Raphael
    Eichenlaub, Jean-Baptiste
    O'Reilly, Christian
    Lajnef, Tarek
    Guillot, Aymeric
    Ruby, Perrine M.
    Jerbi, Karim
    FRONTIERS IN NEUROINFORMATICS, 2017, 11
  • [8] PyMoDAQ: An open-source Python']Python-based software for modular data acquisition
    Weber, S. J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (04):
  • [9] SynBiopython']python: an open-source software library for Synthetic Biology
    Yeoh, Jing Wui
    Swainston, Neil
    Vegh, Peter
    Zulkower, Valentin
    Carbonell, Pablo
    Holowko, Maciej B.
    Peddinti, Gopal
    Poh, Chueh Loo
    SYNTHETIC BIOLOGY, 2021, 6 (01)
  • [10] EEGraph: An open-source Python']Python library for modeling electroencephalograms using graphs
    Maitin, Ana M.
    Nogales, Alberto
    Chazarra, Pedro
    Jose Garcia-Tejedor, Alvaro
    NEUROCOMPUTING, 2023, 519 : 127 - 134