Spanning trees in graphs of high minimum degree with a universal vertex I: An asymptotic result

被引:1
|
作者
Reed, Bruce [1 ]
Stein, Maya [2 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
[2] Univ Chile, Dept Math Engn, Beauchef 851, Santiago, Region Metropol, Chile
基金
巴西圣保罗研究基金会; 加拿大自然科学与工程研究理事会;
关键词
graph; maximum degree; minimum degree; spanning tree; ERDOS-SOS CONJECTURE;
D O I
10.1002/jgt.22897
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper and a companion paper, we prove that, if m $m$ is sufficiently large, every graph on m + 1 $m+1$ vertices that has a universal vertex and minimum degree at least L 2 m 3 <SIC> RIGHT FLOOR $\lfloor \phantom{\rule[-0.5em]{}{0ex}}\frac{2m}{3}\rfloor $ contains each tree T $T$ with m $m$ edges as a subgraph. Our result confirms, for large m $m$, an important special case of a recent conjecture by Havet, Reed, Stein and Wood. The present paper already contains an approximate version of the result.
引用
收藏
页码:737 / 783
页数:47
相关论文
共 50 条
  • [1] Spanning trees in graphs of high minimum degree with a universal vertex II: A tight result
    Reed, Bruce
    Stein, Maya
    [J]. JOURNAL OF GRAPH THEORY, 2023, 102 (04) : 797 - 821
  • [2] SPANNING-TREES IN GRAPHS OF MINIMUM DEGREE 4 OR 5
    GRIGGS, JR
    WU, MS
    [J]. DISCRETE MATHEMATICS, 1992, 104 (02) : 167 - 183
  • [3] Spanning trees with many leaves in graphs with minimum degree three
    Bonsma, Paul S.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (03) : 920 - 937
  • [4] The vertex degrees of minimum spanning trees
    Cieslik, D
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 125 (02) : 278 - 282
  • [5] Morphology on Graphs and Minimum Spanning Trees
    Meyer, Fernand
    Stawiaski, Jean
    [J]. MATHEMATICAL MORPHOLOGY AND ITS APPLICATION TO SIGNAL AND IMAGE PROCESSING, 2009, 5720 : 161 - 170
  • [6] Minimum Spanning Trees in Temporal Graphs
    Huang, Silu
    Fu, Ada Wai-Chee
    Liu, Ruifeng
    [J]. SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 419 - 430
  • [7] ON UNIVERSAL GRAPHS FOR SPANNING-TREES
    CHUNG, FRK
    GRAHAM, RL
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1983, 27 (APR): : 203 - 211
  • [8] A note on universal graphs for spanning trees
    Győri, Ervin
    Li, Binlong
    Salia, Nika
    Tompkins, Casey
    [J]. Discrete Applied Mathematics, 2025, 362 : 146 - 147
  • [9] Minimum bounded degree spanning trees
    Goemans, Michel X.
    [J]. 47TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2006, : 273 - 282
  • [10] Distributed Minimum Degree Spanning Trees
    Dinitz, Michael
    Halldorsson, Magnus M.
    Izumi, Taisuke
    Newport, Calvin
    [J]. PROCEEDINGS OF THE 2019 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC '19), 2019, : 511 - 520