Ensemble deep learning-based lane-changing behavior prediction of manually driven vehicles in mixed traffic environments

被引:3
|
作者
Geng, Boshuo [1 ]
Ma, Jianxiao [1 ]
Zhang, Shaohu [1 ]
机构
[1] Nanjing Forestry Univ, Coll Automobile & Traff Engn, Nanjing 210037, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2023年 / 31卷 / 10期
关键词
traffic engineering; lane change; traffic safety; ensemble learning; deep learning; CHANGE INTENTION INFERENCE; MODEL;
D O I
10.3934/era.2023315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Accurately predicting lane-changing behaviors (lane keeping, left lane change and right lane change) in real-time is essential for ensuring traffic safety, particularly in mixed-traffic environments with both autonomous and manual vehicles. This paper proposes a fused model that predicts vehicle lane-changing behaviors based on the road traffic environment and vehicle motion parameters. The model combines the ensemble learning XGBoost algorithm with the deep learning Bi-GRU neural network. The XGBoost algorithm first checks whether the present environment is safe for the lane change and then evaluates the likelihood that the target vehicle will make a lane change. Subsequently, the Bi-GRU neural network is used to accurately forecast the lane-changing behaviors of nearby vehicles using the feasibility of lane-changing and the vehicle's motion status as input features. The highD trajectory dataset was utilized for training and testing the model. The model achieved an accuracy of 98.82%, accurately predicting lane changes with an accuracy exceeding 87% within a 2-second timeframe. By comparing with other methods and conducting experimental validation, we have demonstrated the superiority of the proposed model, thus, the research achievement is of utmost significance for the practical application of autonomous driving technology.
引用
收藏
页码:6216 / 6235
页数:20
相关论文
共 50 条
  • [1] Driver Lane-Changing Behavior Prediction Based on Deep Learning
    Wei, Cheng
    Hui, Fei
    Khattak, Asad J.
    JOURNAL OF ADVANCED TRANSPORTATION, 2021, 2021
  • [2] Lane-Changing Behavior Prediction Based on Game Theory and Deep Learning
    Jia, Shuo
    Hui, Fei
    Wei, Cheng
    Zhao, Xiangmo
    Liu, Jianbei
    JOURNAL OF ADVANCED TRANSPORTATION, 2021, 2021
  • [3] Cooperative lane-changing in mixed traffic: a deep reinforcement learning approach
    Yao, Xue
    Du, Zhaocheng
    Sun, Zhanbo
    Calvert, Simeon C.
    Ji, Ang
    TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2024,
  • [4] A review on machine learning-based models for lane-changing behavior prediction and recognition
    David, Ruth
    Soeffker, Dirk
    FRONTIERS IN FUTURE TRANSPORTATION, 2023, 4
  • [5] Research on Lane-Changing Behavior in the Mixed Autonomous Vehicles and Human-Driven Vehicles Environment
    Dongye, Changmei
    Shi, Jianjun
    INTERNATIONAL CONFERENCE ON TRANSPORTATION AND DEVELOPMENT 2018: CONNECTED AND AUTONOMOUS VEHICLES AND TRANSPORTATION SAFETY, 2018, : 67 - 77
  • [6] Modeling Lane-Changing Behavior of Vehicles a Merge Section under Mixed Traffic Conditions
    Matcha, Bhargav Naidu
    Sivanesan, Sivakumar
    Ng, K. C.
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2021, 147 (04)
  • [7] A data-driven lane-changing model based on deep learning
    Xie, Dong-Fan
    Fang, Zhe-Zhe
    Jia, Bin
    He, Zhengbing
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2019, 106 : 41 - 60
  • [8] Influence of Lane-Changing Behavior on Traffic Flow Velocity in Mixed Traffic Environment
    Xie, Han
    Ren, Qinghua
    Lei, Zheng
    JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [9] Manifold Learning for Lane-changing Behavior Recognition in Urban Traffic
    Li, Jinghang
    Lu, Chao
    Xu, Youzhi
    Zhang, Zhao
    Gong, Jianwei
    Di, Huijun
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 3663 - 3668
  • [10] Instantaneous Lane-Changing Type Aware Lane Change Prediction Based on LSTM in Mixed Traffic Scenario
    Gao, Kai
    Li, Xunhao
    Hu, Lin
    Yan, Di
    Luo, Binren
    Du, Ronghua
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (10)