Deep Reinforcement Learning Based Resource Allocation for Network Slicing With Massive MIMO

被引:4
|
作者
Yan, Dandan [1 ]
Ng, Benjamin K. [1 ]
Ke, Wei [1 ]
Lam, Chan-Tong [1 ]
机构
[1] Macao Polytech Univ, Fac Appl Sci, Macau, Peoples R China
关键词
Resource management; Quality of experience; Network slicing; Quality of service; Bandwidth; Radio access networks; Convergence; Massive MIMO; resource allocation; radio access networks (RAN); massive MIMO; advantage actor critic (A2C); COMMUNICATION; MANAGEMENT;
D O I
10.1109/ACCESS.2023.3296851
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network slicing is a critical technology for fifth-generation (5G) networks, owing to its merits in meeting the diversified requirements of users. Effective resource allocation for network slicing in Radio Access Networks (RAN) is still challenging owing to dynamic service requirements. Therein, automatic resource allocation based on environmental changes is of significant importance for network slicing. In this study, we used deep reinforcement learning (DRL) to allocate resources for network slicing in a RAN with the aid of massive multiple-input multiple-output (MIMO). The DRL agent interacts with the environment to execute autonomous resource allocation. We considered a two-level scheduling framework that aims to maximize the quality of experience (QoE) and spectrum efficiency (SE) of slices. The proposed algorithm can find a near-optimal solution. We used the standard DRL advantage actor-critic (A2C) algorithm to implement upper-level inter-slice bandwidth resource allocation that considers service traffic dynamics in a large timescale. Lower-level scheduling is a mixed-integer stochastic optimization problem with several constraints. We combined the proportional fair scheduling algorithm and the water filling algorithm to perform resource block (RB) and power allocation in a small timescale. The results show that the QoE and SE of all slices using the A2C algorithm achieved a significant performance improvement over the other algorithms. The efficiency of the proposed method was supported by the simulation results.
引用
收藏
页码:75899 / 75911
页数:13
相关论文
共 50 条
  • [1] Deep Reinforcement Learning for Resource Allocation in Massive MIMO
    Chen, Liang
    Sun, Fanglei
    Li, Kai
    Chen, Ruiqing
    Yang, Yang
    Wang, Jun
    [J]. 29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1611 - 1615
  • [2] Dynamic Resource Allocation in Network Slicing with Deep Reinforcement Learning
    Cai, Yue
    Cheng, Peng
    Chen, Zhuo
    Xiang, Wei
    Vucetic, Branka
    Li, Yonghui
    [J]. IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 2955 - 2960
  • [3] Deep Reinforcement Learning for Online Resource Allocation in Network Slicing
    Cai, Yue
    Cheng, Peng
    Chen, Zhuo
    Ding, Ming
    Vucetic, Branka
    Li, Yonghui
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (06) : 7099 - 7116
  • [4] Deep Reinforcement Learning for Resource Allocation with Network Slicing in Cognitive Radio Network*
    Yuan, Siyu
    Zhang, Yong
    Qie, Wenbo
    Ma, Tengteng
    Li, Sisi
    [J]. COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2021, 18 (03) : 979 - 999
  • [5] DeepSlicing: Deep Reinforcement Learning Assisted Resource Allocation for Network Slicing
    Liu, Qiang
    Han, Tao
    Zhang, Ning
    Wang, Ye
    [J]. 2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [6] Radio Resource Allocation Method for Network Slicing using Deep Reinforcement Learning
    Abiko, Yu
    Saito, Takato
    Ikeda, Daizo
    Ohta, Ken
    Mizuno, Tadanori
    Mineno, Hiroshi
    [J]. 2020 34TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2020), 2020, : 420 - 425
  • [7] Constrained Reinforcement Learning for Resource Allocation in Network Slicing
    Xu, Yizhen
    Zhao, Zhengyang
    Cheng, Peng
    Chen, Zhuo
    Ding, Ming
    Vucetic, Branka
    Li, Yonghui
    [J]. IEEE COMMUNICATIONS LETTERS, 2021, 25 (05) : 1554 - 1558
  • [8] Deep Reinforcement Learning for Resource Management in Network Slicing
    Li, Rongpeng
    Zhao, Zhifeng
    Sun, Qi
    I, Chih-Lin
    Yang, Chenyang
    Chen, Xianfu
    Zhao, Minjian
    Zhang, Honggang
    [J]. IEEE ACCESS, 2018, 6 : 74429 - 74441
  • [9] CLARA: A Constrained Reinforcement Learning Based Resource Allocation Framework for Network Slicing
    Liu, Yongshuai
    Ding, Jiaxin
    Zhang, Zhi-Li
    Liu, Xin
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 1427 - 1437
  • [10] Safe and Fast Reinforcement Learning for Network Slicing Resource Allocation
    Massaro, Antonio
    Wellington, Dan
    Aghasaryan, Armen
    Seidl, Robert
    Naseer-Ul-Islam, Muhammad
    Bulakci, Oemer
    [J]. 2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,