Construction of Z-scheme heterojunction CoS/CdS@g-C3N4 hollow sphere with spatical charge separation for enhanced photocatalytic hydrogen production

被引:21
|
作者
Zhang, Chengjia [1 ]
Liang, Qian [2 ]
Wang, Yanan [2 ]
Zhou, Man [2 ]
Li, Xiazhang [2 ]
Xu, Song [2 ]
Li, Zhongyu [1 ,2 ,3 ]
机构
[1] Changzhou Univ, Sch Mat Sci & Engn, Changzhou 213164, Peoples R China
[2] Changzhou Univ, Sch Petrochem Engn, Jiangsu Key Lab Adv Catalyt Mat & Technol, Changzhou 213164, Peoples R China
[3] Changzhou Univ, Sch Environm & Safety Engn, Changzhou 213164, Peoples R China
基金
中国国家自然科学基金;
关键词
Z-scheme heterojunction; Hollow spherical carbon nitride; CoS; CdS@HCNS composites; 0D; 3D spatial structure; Photocatalytic hydrogen production; CDS QUANTUM DOTS; HETEROSTRUCTURES; NANOSHEETS; G-C3N4; H-2;
D O I
10.1016/j.apsusc.2023.157214
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design and construction of low-cost and high-performance semiconductor is critical for the large-scale application of hydrogen energy. Hollow spherical carbon nitride (HCNS) is considered as a promising photocatalytic material due to its large inner space and appropriate band gap. Herein, 0D CdS QDs and 0D CoS nanoparticles are coated on HCNS to form a distinct double-shell structure by a facile in-situ preparation process. Based on the unique hierarchical structure, the photoinduced charge is spatially separated along the ternary catalysts to improve the electron transfer and reaction kinetics. The CoS/CdS@HCNS shows the highest H2 generation activity under visible light irradiation (2866 mu mol.g- 1.h- 1), which is 20.2 and 7.9 times higher than that of HCNS (142 mu mol.g- 1.h- 1) and CdS (363 mu mol.g- 1.h- 1), respectively. In addition, the 5%-CoS/ CdS@HCNS composite has high stability after 4 cycles of test. It provides a new strategy for exploring and manufacturing 0D/3D photocatalysts for energy and environmental applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Z-scheme g-C3N4/ZnO heterojunction decorated by Au nanoparticles for enhanced photocatalytic hydrogen production
    Ge, Wen
    Liu, Kong
    Deng, Shukang
    Yang, Peizhi
    Shen, Lanxian
    APPLIED SURFACE SCIENCE, 2023, 607
  • [2] Z-Scheme g-C3N4/Bi4NbO8Cl Heterojunction for Enhanced Photocatalytic Hydrogen Production
    You, Yong
    Wang, Shuobo
    Xiao, Ke
    Ma, Tianyi
    Zhang, Yihe
    Huang, Hongwei
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (12): : 16219 - 16227
  • [3] Construction of novel direct Z-scheme AgIO4-g-C3N4 heterojunction for photocatalytic hydrogen production and photodegradation of fluorescein dye
    Al-Zaqri, Nabil
    Alsalme, Ali
    Ahmed, M. A.
    Galal, A. H.
    DIAMOND AND RELATED MATERIALS, 2020, 109
  • [4] A Z-scheme BiVO4/CdS hollow sphere with a high photocatalytic hydrogen evolution activity
    Yang, Haowei
    Fan, Jinlong
    Zhou, Chengxin
    Wan, Yingfei
    Zhang, Jin
    Chen, Jinwei
    Wang, Gang
    Wang, Ruilin
    Jiang, Chunping
    MATERIALS LETTERS, 2020, 280
  • [5] Direct Z-scheme CoS/g-C3N4 heterojunction with NiS co-catalyst for efficient photocatalytic hydrogen generation
    Bi, Zhe-xu
    Guo, Rui-tang
    Hu, Xing
    Wang, Juan
    Chen, Xin
    Pan, Wei-guo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (81) : 34430 - 34443
  • [6] Construction of Z-scheme BiOI/g-C3N4 heterojunction with enhanced photocatalytic activity and stability under visible light
    Yuzhen Li
    Zhen Li
    Lizhen Gao
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 12769 - 12782
  • [7] Enhanced the Efficiency of Photocatalytic Degradation of Methylene Blue by Construction of Z-Scheme g-C3N4/BiVO4 Heterojunction
    Zhang, Xiong
    Li, Minjin
    Liu, Cheng
    Zhang, Zhiyong
    Zhang, Fuchun
    Liu, Qiaoping
    COATINGS, 2021, 11 (09)
  • [8] Construction of Z-scheme BiOI/g-C3N4 heterojunction with enhanced photocatalytic activity and stability under visible light
    Li, Yuzhen
    Li, Zhen
    Gao, Lizhen
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (13) : 12769 - 12782
  • [9] Spatially distributed Z-scheme heterojunction of g-C3N4/SnIn4S8 for enhanced photocatalytic hydrogen production and pollutant degradation
    Tang, Changcun
    Xiong, Renzhi
    Li, Kunjiao
    Xiao, Yanhe
    Cheng, Baochang
    Lei, Shuijin
    APPLIED SURFACE SCIENCE, 2022, 598
  • [10] Construction of Z-scheme SbVO4/g-C3N4 heterojunction with efficient photocatalytic degradation performance
    Wang, Ling
    Zhu, Xiaoya
    Rong, Jian
    Feng, Chujun
    Liu, Congtian
    Wang, Yanan
    Li, Zhongyu
    Xu, Song
    SOLID STATE SCIENCES, 2024, 155