The endomorphism ring of the trivial module in a localized category

被引:0
|
作者
Carlson, Jon F. [1 ,2 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA USA
[2] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
finite group representations; idempotent modules; stable module category; Verdier localization; COHOMOLOGY;
D O I
10.1002/mana.202200160
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that G is a finite group and k is a field of characteristic p>0. Let M be the thick tensor ideal of finitely generated modules, whose support variety is in a fixed subvariety V of the projectivized prime ideal spectrum ProjH*(G,k). Let C denote the Verdier localization of the stable module category stmod(kG) at M. We show that if V is a finite collection of closed points and if the p-rank of every maximal elementary abelian p-subgroups of G is at least 3, then the endomorphism ring of the trivial module in C is a local ring, whose unique maximal ideal is infinitely generated and nilpotent. In addition, we show an example where the endomorphism ring in C of a compact object is not finitely presented as a module over the endomorphism ring of the trivial module.
引用
收藏
页码:4264 / 4278
页数:15
相关论文
共 50 条
  • [1] Negative cohomology and the endomorphism ring of the trivial module
    Carlson, Jon F.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (09)
  • [2] On the Radical of the Module Category of an Endomorphism Algebra
    Claudia Chaio
    Victoria Guazzelli
    Algebras and Representation Theory, 2020, 23 : 1159 - 1175
  • [3] On the Radical of the Module Category of an Endomorphism Algebra
    Chaio, Claudia
    Guazzelli, Victoria
    ALGEBRAS AND REPRESENTATION THEORY, 2020, 23 (03) : 1159 - 1175
  • [4] ENDOMORPHISM RING OF AN INDUCED MODULE
    TUCKER, PA
    MICHIGAN MATHEMATICAL JOURNAL, 1965, 12 (02) : 197 - &
  • [5] THE ENDOMORPHISM RING OF A DISTRIBUTIVE MODULE
    TUGANBAEV, AA
    RUSSIAN MATHEMATICAL SURVEYS, 1995, 50 (01) : 218 - 219
  • [6] ON THE ENDOMORPHISM RING OF THE CANONICAL MODULE
    AOYAMA, Y
    GOTO, S
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1985, 25 (01): : 21 - 30
  • [7] ENDOMORPHISM RING OF ARTIN AN MODULE
    GUPTA, RN
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1985, 16 (12): : 1478 - 1480
  • [8] A note on the singularity category of an endomorphism ring
    Chen, Xiao-Wu
    ARKIV FOR MATEMATIK, 2015, 53 (02): : 237 - 248
  • [9] THE ENDOMORPHISM RING OF A LOCALLY FREE MODULE
    FRANZSEN, WN
    SCHULTZ, P
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1983, 35 (DEC): : 308 - 326
  • [10] The endomorphism ring of a localized coherent functor
    Herzog, I
    JOURNAL OF ALGEBRA, 1997, 191 (01) : 416 - 426