ON LOCALLY FINITE ORTHOMODULAR LATTICES

被引:0
|
作者
Buresova, Dominika [1 ]
Ptak, Pavel [2 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Prague, Czech Republic
[2] Czech Tech Univ, Fac Elect Engn, Dept Math, Prague, Czech Republic
关键词
Boolean algebra; orthomodular lattice; local finiteness; state;
D O I
10.1515/ms-2023-0040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let us denote by GF the class of all orthomodular lattices (OMLs) that are locally finite (i.e., L ? GF provided each finite subset of L generates in L a finite subOML). In this note, we first show how one can obtain new locally finite OMLs from the initial ones and enlarge thus the class GF. We find GF considerably large though, obviously, not all OMLs belong to GF. Then we study states on the OMLs of GF. We show that local finiteness may to a certain extent make up for distributivity. For instance, we show that if L ? GF and if for any finite subOML K there is a state s: K -[0,1] on K, then there is a state on the entire L. We also consider further algebraic and state properties of GF relevant to the quantum logic theory.
引用
收藏
页码:545 / 549
页数:5
相关论文
共 50 条
  • [1] REPRESENTATIONS OF LOCALLY COMPACT ORTHOMODULAR LATTICES
    CHOE, TH
    GREECHIE, RJ
    CHAE, Y
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1994, 56 (02) : 165 - 173
  • [2] BLOCK-FINITE ORTHOMODULAR LATTICES
    BRUNS, G
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (05): : 961 - 985
  • [3] COMMUTATOR-FINITE ORTHOMODULAR LATTICES
    GREECHIE, R
    HERMAN, L
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1985, 1 (03): : 277 - 284
  • [4] BLOCK-FINITE ATOMIC ORTHOMODULAR LATTICES
    PULMANNOVA, S
    RIECANOVA, Z
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1993, 89 (03) : 295 - 304
  • [5] JAUCH-PIRON CONDITION IN FINITE ORTHOMODULAR LATTICES
    RUTTIMANN, GT
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (02): : A273 - A273
  • [6] Orthomodular Lattices
    Madra, Elzbieta
    Grabowski, Adam
    [J]. FORMALIZED MATHEMATICS, 2008, 16 (03): : 277 - 282
  • [7] Subalgebras of Orthomodular Lattices
    John Harding
    Mirko Navara
    [J]. Order, 2011, 28 : 549 - 563
  • [8] A Note on Orthomodular Lattices
    Bonzio, S.
    Chajda, I.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (12) : 3740 - 3743
  • [9] Weakly Orthomodular and Dually Weakly Orthomodular Lattices
    Ivan Chajda
    Helmut Länger
    [J]. Order, 2018, 35 : 541 - 555
  • [10] ORTHOMODULAR LATTICES WHOSE MACNEILLE COMPLETIONS ARE NOT ORTHOMODULAR
    HARDING, J
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1991, 8 (01): : 93 - 103