机构:
Bar Ilan Univ, Dept Math, Ramat Gan 5290002, Israel
Moscow Ctr Fundamental & Appl Math, Moscow 119991, RussiaBar Ilan Univ, Dept Math, Ramat Gan 5290002, Israel
Guterman, A. E.
[1
,2
]
Spiridonov, I. A.
论文数: 0引用数: 0
h-index: 0
机构:
Moscow Ctr Fundamental & Appl Math, Moscow 119991, Russia
Weizmann Inst Sci, IL-7610001 Rehovot, IsraelBar Ilan Univ, Dept Math, Ramat Gan 5290002, Israel
Spiridonov, I. A.
[2
,3
]
机构:
[1] Bar Ilan Univ, Dept Math, Ramat Gan 5290002, Israel
[2] Moscow Ctr Fundamental & Appl Math, Moscow 119991, Russia
Permanent;
Rank;
Linear map;
Preservers;
TRANSFORMATIONS;
INVARIANCE;
OPERATORS;
MATRICES;
D O I:
10.1016/j.laa.2023.10.016
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let Mat(n)(F) denote the set of square n x n matrices over a field F of characteristic different from two. The permanental rank prk (A) of a matrix A is an element of Mat(n)(F) is the size of the maximal square submatrix in A with nonzero permanent. By Lambda(k) and A <= k we denote the subsets of matrices A is an element of Mat(n)(F) with prk (A) = k and prk (A) < k, respectively. In this paper for each 1 <= k <= n -1 we obtain a complete characterization of linear maps T : Mat(n)(F)-+ Mat(n)(F) satisfying T(Lambda (<= k)) = Lambda (<= k )or bijective linear maps satisfying T(Lambda (<= k)) C Lambda (<= k). Moreover, we show that if F is an infinite field, then Lambda(k) is Zariski dense in Lambda (<= k) and apply this to describe such bijective linear maps satisfying T(Lambda(k)) subset of Lambda(k).(c) 2023 Elsevier Inc. All rights reserved.
机构:
Moscow MV Lomonosov State Univ, Dept Math & Mech, Fac Algebra, Moscow 119992, RussiaMoscow MV Lomonosov State Univ, Dept Math & Mech, Fac Algebra, Moscow 119992, Russia
Alieva, AA
Guterman, AE
论文数: 0引用数: 0
h-index: 0
机构:
Moscow MV Lomonosov State Univ, Dept Math & Mech, Fac Algebra, Moscow 119992, RussiaMoscow MV Lomonosov State Univ, Dept Math & Mech, Fac Algebra, Moscow 119992, Russia
机构:
Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
Huang, Zejun
Shi, Shiyu
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
Shi, Shiyu
Sze, Nung-Sing
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China