Quasi-Statistical Schouten-van Kampen Connections on the Tangent Bundle

被引:0
|
作者
Druta-Romaniuc, Simona-Luiza [1 ]
机构
[1] Gheorghe Asachi Tech Univ Iasi, Dept Math & Informat, Str Dimitrie Mangeron 67A, Iasi 700050, Romania
关键词
(pseudo-)Riemannian manifold; Codazzi pair; statistical manifold; quasi-statistical manifold; Schouten-van Kampen connection; tangent bundle; general natural metric; CODAZZI; MANIFOLDS;
D O I
10.3390/math11224614
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the general natural metrics G on the total space TM of the tangent bundle of a Riemannian manifold (M, g) such that the Schouten-van Kampen connection (del) over bar associated to the Levi-Civita connection of G is (quasi-)statistical. We prove that the base manifold must be a space form and in particular, when G is a natural diagonal metric, (M, g) must be locally flat. We prove that there exist one family of natural diagonal metrics and two families of proper general natural metrics such that (TM, (del) over bar, G) is a statistical manifold and one family of proper general natural metrics such that (TM \ {0}, (del) over bar, G) is a quasi-statistical manifold.
引用
收藏
页数:20
相关论文
共 27 条