Reducing roundoff errors in numerical integration of planetary ephemeris

被引:0
|
作者
Subbotin, Maksim [1 ]
Kodukov, Alexander [1 ]
Pavlov, Dmitry [1 ]
机构
[1] St Petersburg Electrotech Univ, Fac Comp Sci & Technol, Ul Prof Popova 5, St Petersburg 197022, Russia
来源
关键词
Numerical integration; Floating-point arithmetics; N-body problem; Planetary ephemeris;
D O I
10.1007/s10569-023-10139-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Modern lunar-planetary ephemerides are numerically integrated on the observational timespan of more than 100 years (with the last 20 years having very precise astrometrical data). On such long timespans, not only finite difference approximation errors, but also the accumulating arithmetic roundoff errors become important because they exceed random errors of high-precision range observables of Moon, Mars, and Mercury. One way to tackle this problem is using extended-precision arithmetics available on x86 processors. Noting the drawbacks of this approach, we propose an alternative: using double-double arithmetics where appropriate. This will allow to use only double-precision floating-point primitives, which have ubiquitous support.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Reducing roundoff errors in numerical integration of planetary ephemeris
    Maksim Subbotin
    Alexander Kodukov
    Dmitry Pavlov
    Celestial Mechanics and Dynamical Astronomy, 2023, 135
  • [2] REDUCING ROUNDOFF ERRORS IN MICROPROCESSOR BASED CALCULATIONS
    DAVIS, HA
    COMPUTER DESIGN, 1981, 20 (02): : 113 - 117
  • [3] NUMERICAL CHAOS, ROUNDOFF ERRORS, AND HOMOCLINIC MANIFOLDS
    ABLOWITZ, MJ
    SCHOBER, C
    HERBST, BM
    PHYSICAL REVIEW LETTERS, 1993, 71 (17) : 2683 - 2686
  • [4] REDUCING ELEVATION ROUNDOFF ERRORS IN DIGITAL ELEVATION MODELS
    NELSON, EJ
    JONES, NL
    JOURNAL OF HYDROLOGY, 1995, 169 (1-4) : 37 - 49
  • [5] REDUCING ROUNDOFF ERRORS IN MICROPROCESSOR BASED CALCULATIONS.
    Davis, Henry A.
    Electronic Systems Technology and Design/Computer Design's, 1981, 20 (02): : 113 - 117
  • [6] INPOP06: a new numerical planetary ephemeris
    Fienga, A.
    Manche, H.
    Laskar, J.
    Gastineau, M.
    ASTRONOMY & ASTROPHYSICS, 2008, 477 (01) : 315 - 327
  • [7] INPOP06: A new numerical planetary ephemeris
    Fienga, A.
    Manche, H.
    Laskar, J.
    Gastineau, M.
    1600, EDP Sciences, 17 Avenue du Hoggar - BP 112, Les Ulis Cedex A, F-91944, France (477):
  • [8] A SIMPLE PROCEDURE FOR REDUCING NUMERICAL-INTEGRATION ERRORS NEAR SINGULARITIES
    MANNO, VP
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1988, 4 (06): : 713 - 716
  • [9] PETREL19: a new numerical solution of planetary and lunar ephemeris
    Tian, Wei
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2023, 135 (04):
  • [10] PETREL19: a new numerical solution of planetary and lunar ephemeris
    Wei Tian
    Celestial Mechanics and Dynamical Astronomy, 2023, 135